

COLLADA – Digital Asset Schema Release 1.5.0

Specification

April 2008

Editors: Mark Barnes and Ellen Levy Finch, Sony Computer Entertainment Inc.

© 2005-2008 The Khronos Group Inc., Sony Computer Entertainment Inc.

All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any
components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise
exploited in any manner without the express prior written permission of Khronos Group. You may use this specification
for implementing the functionality therein, without altering or removing any trademark, copyright, or other notice from
the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose,
or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor, or Adopter member of Khronos to
copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for
the specification and the latest available update of the specification for any version of the API is used whenever
possible. Such distributed specification may be reformatted AS LONG AS the contents of the specification are not
changed in any way. The specification may be incorporated into a product that is sold as long as such product includes
significant independent work developed by the seller. A link to the current version of this specification on the Khronos
Group website should be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express or implied, regarding
this specification, including, without limitation, any implied warranties of merchantability or fitness for a particular
purpose or noninfringement of any intellectual property. Khronos Group makes no, and expressly disclaims any,
warranties, express or implied, regarding the correctness, accuracy, completeness, timeliness, and reliability of the
specification. Under no circumstances will the Khronos Group, or any of its Promoters, Contributors, or Members or
their respective partners, officers, directors, employees, agents, or representatives be liable for any damages, whether
direct, indirect, special, or consequential damages for lost revenues, lost profits, or otherwise, arising from or in
connection with these materials.

Khronos is a trademark of The Khronos Group Inc.

COLLADA is a trademark of Sony Computer Entertainment Inc. used by permission by Khronos.

All other trademarks are the property of their respective owners and/or their licensors.

Publication date: April 2008

Khronos Group
P.O. Box 1019
Clearlake Park, CA 95424, U.S.A.

Sony Computer Entertainment Inc.
2-6-21 Minami-Aoyama, Minato-ku,
Tokyo 107-0062 Japan

Sony Computer Entertainment America
919 E. Hillsdale Blvd.
Foster City, CA 94404, U.S.A.

Sony Computer Entertainment Europe
30 Golden Square
London W1F 9LD, U.K.

 April 2008

Table of Contents

About This Manual ix
Audience ix
Content of this Document ix
Typographic Conventions and Notation x
Notation and Organization in the Reference Chapters x
Other Sources of Information xi

Chapter 1: Design Considerations 1-1
Introduction 1-1
Assumptions and Dependencies 1-1
Goals and Guidelines 1-1

Chapter 2: Tool Requirements and Options 2-1
Introduction 2-1
Exporters 2-1
Importers 2-3
Archive Packaging 2-4

Chapter 3: Schema Concepts 3-1
Introduction 3-1
XML Overview 3-1
Address Syntax 3-1
Instantiation and External Referencing 3-5
The Common Profile 3-6

Chapter 4: Programming Guide 4-1
Introduction 4-1
About Parameters in COLLADA 4-1
Curve Interpolation 4-1
Skin Deformation (or Skinning) in COLLADA 4-7

Chapter 5: Core Elements Reference 5-1
Introduction 5-1
Elements by Category 5-1
accessor 5-5
ambient (core) 5-11
animation 5-12
animation_clip 5-15
asset 5-17
bool_array 5-20
camera 5-21
channel 5-23
COLLADA 5-24
color 5-26
contributor 5-27
controller 5-29
control_vertices 5-31
directional 5-33
evaluate_scene 5-34
extra 5-35
float_array 5-37
formula 5-38
geographic_location 5-40
geometry 5-42
IDREF_array 5-44

iv COLLADA – Digital Asset Schema Release 1.5.0

April 2008

imager 5-45
input (shared) 5-47
input (unshared) 5-50
instance_animation 5-52
instance_camera 5-54
instance_controller 5-56
instance_formula 5-59
instance_geometry 5-61
instance_light 5-63
instance_node 5-65
instance_visual_scene 5-67
int_array 5-69
joints 5-70
library_animation_clips 5-71
library_animations 5-72
library_cameras 5-73
library_controllers 5-74
library_formulas 5-75
library_geometries 5-76
library_lights 5-77
library_nodes 5-78
library_visual_scenes 5-79
light 5-80
lines 5-82
linestrips 5-84
lookat 5-86
matrix 5-88
mesh 5-89
morph 5-92
Name_array 5-94
newparam 5-96
node 5-98
optics 5-100
orthographic 5-102
param (data flow) 5-104
param (reference) 5-105
perspective 5-108
point 5-110
polygons 5-112
polylist 5-115
rotate 5-117
sampler 5-118
scale 5-125
scene 5-126
setparam 5-128
SIDREF_array 5-130
skeleton 5-131
skew 5-133
skin 5-134
source (core) 5-137
spline 5-139
spot 5-141
targets 5-143
technique (core) 5-144
technique_common 5-146
translate 5-147

 Specification – Table of Contents v

 April 2008

triangles 5-148
trifans 5-150
tristrips 5-152
vertex_weights 5-154
vertices 5-156
visual_scene 5-157

Chapter 6: Physics Reference 6-1
Introduction 6-1
Elements by Category 6-1
attachment 6-4
box 6-5
capsule 6-6
convex_mesh 6-7
cylinder 6-9
force_field 6-10
instance_force_field 6-11
instance_physics_material 6-12
instance_physics_model 6-13
instance_physics_scene 6-15
instance_rigid_body 6-16
instance_rigid_constraint 6-19
library_force_fields 6-21
library_physics_materials 6-22
library_physics_models 6-23
library_physics_scenes 6-24
physics_material 6-25
physics_model 6-27
physics_scene 6-30
plane 6-33
ref_attachment 6-34
rigid_body 6-35
rigid_constraint 6-39
shape 6-43
sphere 6-45

Chapter 7: Getting Started with FX 7-1
Introduction 7-1
Using Profiles for Platform-Specific Effects 7-1
About Parameters in FX 7-4
Shaders 7-5
Rendering 7-5
Texturing 7-6

Chapter 8: FX Reference 8-1
Introduction 8-1
Elements by Category 8-1
About COLLADA FX 8-4
alpha 8-5
annotate 8-6
argument 8-7
array 8-9
binary 8-11
bind (FX) 8-13
bind_attribute 8-15
bind_material 8-16
bind_uniform 8-19

vi COLLADA – Digital Asset Schema Release 1.5.0

April 2008

bind_vertex_input 8-21
blinn 8-23
code 8-26
color_clear 8-27
color_target 8-28
compiler 8-30
constant (FX) 8-31
create_2d 8-34
create_3d 8-36
create_cube 8-38
depth_clear 8-40
depth_target 8-41
draw 8-43
effect 8-45
evaluate 8-47
format 8-49
fx_common_color_or_texture_type 8-52
fx_common_float_or_param_type 8-54
fx_sampler_common 8-55
image 8-58
include 8-61
init_from 8-62
instance_effect 8-64
instance_image 8-66
instance_material (geometry) 8-68
instance_material (rendering) 8-70
lambert 8-72
library_effects 8-74
library_images 8-75
library_materials 8-76
linker 8-78
material 8-79
modifier 8-81
pass 8-82
phong 8-84
profile_BRIDGE 8-87
profile_CG 8-89
profile_COMMON 8-92
profile_GLES 8-94
profile_GLES2 8-97
profile_GLSL 8-101
program 8-103
render 8-105
RGB 8-106
sampler1D 8-107
sampler2D 8-108
sampler3D 8-109
samplerCUBE 8-110
samplerDEPTH 8-111
samplerRECT 8-112
sampler_image 8-113
sampler_states 8-114
semantic 8-115
shader 8-116
sources 8-118
states 8-120

 Specification – Table of Contents vii

 April 2008

stencil_clear 8-126
stencil_target 8-127
technique (FX) 8-129
technique_hint 8-131
texcombiner 8-132
texenv 8-135
texture_pipeline 8-137
usertype 8-140

Chapter 9: B-Rep Reference 9-1
Introduction 9-1
Elements by Category 9-1
About B-Rep in COLLADA 9-2
brep 9-7
circle 9-9
cone 9-11
curve 9-13
curves 9-15
cylinder (B-Rep) 9-16
edges 9-17
ellipse 9-19
faces 9-21
hyperbola 9-23
line 9-24
nurbs 9-25
nurbs_surface 9-28
orient 9-31
origin 9-32
parabola 9-33
pcurves 9-34
shells 9-36
solids 9-38
surface 9-40
surfaces 9-42
surface_curves 9-43
swept_surface 9-44
torus 9-46
wires 9-47
Complete B-Rep Example 9-49

Chapter 10: Kinematics Reference 10-1
Introduction 10-1
Elements by Category 10-1
articulated_system 10-3
attachment_end 10-5
attachment_full 10-6
attachment_start 10-8
axis_info 10-10
bind (kinematics) 10-13
bind_joint_axis 10-14
bind_kinematics_model 10-16
connect_param (kinematics) 10-18
effector_info 10-19
frame_object, frame_origin, frame_tcp, frame_tip 10-21
instance_articulated_system 10-22
instance_joint 10-24
instance_kinematics_model 10-26

viii COLLADA – Digital Asset Schema Release 1.5.0

April 2008

instance_kinematics_scene 10-28
joint 10-30
kinematics 10-32
kinematics_model 10-35
kinematics_scene 10-37
library_articulated_systems 10-38
library_joints 10-39
library_kinematics_models 10-40
library_kinematics_scenes 10-41
link 10-42
motion 10-43
prismatic 10-45
revolute 10-47

Chapter 11: Types 11-1
Introduction 11-1
Simple Value Types 11-1
Parameter-Type Elements 11-2
Other Simple Types 11-3
Value-or-Param Types 11-3

Appendix A: COLLADA Example A-1
Example: Cube A-1

Appendix B: Profile GLSL and GLES2 Examples B-1
Example: <profile_GLSL> B-1
Example: <profile_GLES2> B-6

Glossary G-1

General Index I-1

Index of COLLADA Elements I-4

 April 2008

About This Manual

This document describes the COLLADA schema. COLLADA is a COLLAborative Design Activity that
defines an XML-based schema to enable 3D authoring applications to freely exchange digital assets
without loss of information, enabling multiple software packages to be combined into extremely powerful
tool chains.

The purpose of this document is to provide a specification for the COLLADA schema in sufficient detail to
enable software developers to create tools to process COLLADA resources. In particular, it is relevant to
those who import to or export from digital content creation (DCC) applications, 3D interactive applications
and tool chains, prototyping tools, real-time visualization applications such as those used in the video game
and movie industries, and CAD tools.

This document covers the initial design and specifications of the COLLADA schema, as well as a minimal
set of requirements for COLLADA exporters. A short example of a COLLADA instance document is
presented in “Appendix A”.

Audience

This document is public. The intended audience is programmers who want to create applications, or plug-
ins for applications, that can utilize the COLLADA schema.

Readers of this document should:

• Have knowledge of XML and XML Schema.
• Be familiar with shading languages such as NVIDIA® Cg or Pixar RenderMan®.

• Have a general knowledge and understanding of computer graphics and graphics APIs such as
OpenGL®.

Content of this Document

This document consists of the following chapters:

Chapter/Section Description

Chapter 1: Design Considerations Issues concerning the COLLADA design.

Chapter 2: Tool Requirements and Options COLLADA tool requirements for implementors.

Chapter 3: Design Considerations A general description of the schema and its design, and introduction
of key concepts necessary for understanding and using COLLADA.

Chapter 4: Programming Guide Detailed instructions for some aspects of programming using
COLLADA.

Chapter 5: Core Elements Reference Detailed reference descriptions of the core elements in the COLLADA
schema.

Chapter 6: Physics Reference Detailed reference descriptions of COLLADA Physics elements.

Chapter 7: Getting Started with FX Concepts and usage notes for COLLADA FX elements.

Chapter 8: FX Reference Detailed reference descriptions of COLLADA FX elements.

Chapter 9: B-Rep Reference Detailed reference descriptions of COLLADA B-Rep elements.

Chapter 10: Kinematics Reference Detailed reference descriptions of COLLADA Kinematics elements.

Chapter 11: Types Definitions of some simple COLLADA types.

Appendix A: COLLADA Example An example COLLADA instance document.

Appendix B: Profile GLSL and GLES2 Example A detailed example of the COLLADA FX <profile_GLSL> element.

Glossary Definitions of terms used in this document, including XML terminology.

x COLLADA – Digital Asset Schema Release 1.5.0

April 2008

Chapter/Section Description

General Index Index of concepts and key terms.

Index of COLLADA Elements Index to all COLLADA elements, including minor elements that do not
have their own reference pages.

Typographic Conventions and Notation

Certain typographic conventions are used throughout this manual to clarify the meaning of the text:

Conventions Description

Regular text Descriptive text

<blue text> XML elements

Courier-type font Attribute names

Courier bold File names

blue Hyperlinks

Italic text New terms or emphasis

Italic Courier Placeholders for values in commands or code

element1 / element2 element1 is the parent, element2 is the child; for further information, refer to “Xpath
Syntax” at http://www.w3schools.com/xpath/xpath_syntax.asp

Notation and Organization in the Reference Chapters

The schema reference chapters describe each feature of the COLLADA schema syntax. Each XML element
in the schema has the following sections:

Section Description

Introduction Name and purpose of the element

Concepts Background and rationale for the element

Attributes Attributes applicable to the element

Related Elements Lists of parent elements and of other related elements

Child Elements Lists of valid child elements and descriptions of each

Details Information concerning the usage of the element

Example Example usage of the element

Child Element Conventions

The Child Elements table lists all child elements for the specified element. For each child:

• “See main entry” means that one of the Reference chapters has a main entry for the child element,
so refer to it for details about the child’s usage, attributes, and children.

• If there is not a main entry in the Reference chapters, or if the local child element’s properties vary
from the main entry, information about the child element is given either in the Child Elements table
or in an additional element-specific subsection.

For example:

Name/example Description Default Occurrences

<camera> Brief_description. See main entry.
(This means that there is a main Reference entry for
camera, so look there for details.)

 1 or more

<technique_common> Brief_description. See the following subsection.
(This means that details are given here but in a
separate table.)

N/A
(means not
applicable)

http://www.w3schools.com/xpath/xpath_syntax.asp�

 Specification – About This Manual xi

 April 2008

Name/example Description Default Occurrences

<yfov sid="..."> Description, including discussion of attributes,
content, and relevant child elements.
(This means that there is no main Reference entry
for yfov. Details are given here.)

None (italic
lowercase
means none
assigned)
NONE (means
the value NONE)

Child Element Order

XML allows a schema definition to include notation that requires elements to occur in a certain order within
their parent element. When this reference states that child elements must appear in the following order, it
refers to a declaration similar to the following, in which the XML <sequence> element states that
<extra> must follow <asset>:

<xs:sequence>
 <xs:element ref="asset" minOccurs="0"/>
 <xs:element ref="extra" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

XML also provides notation indicating that two or more child elements can occur in any order. When this
reference states that two child elements can appear in any order, it refers to the XML <choice> element
with an unbounded maximum. For example, in the following, 
...
<effect id="effect_id">
 ...
 <profile_COMMON>
 <technique sid="technique_sid">
 <newparam sid="sampler2D_param_id">
 <sampler2D>
 <instance image url="#surface_param_id"/>
 ...
 </sampler2D>
 </newparam>
 <lambert>
 <diffuse>
 <texture texture="sampler2D_param_id" texcoord="myUVs"/>
 </diffuse>
 </lambert>
 ...
</effect>
...
<material id="material_id">
 <instance_effect url="#effect_id" />
</material>
...
<geometry id="geometry_id">
 ...
 <input semantic="TEXCOORD" source="#..." offset=".." />
 <triangles material="material_symbol" count"...">

7-8 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

 ...
</geometry>
...
<scene>
 ...
 <instance_geometry url="#geometry_id">
 <bind_material>
 <technique_common>
 <instance_material symbol="material_symbol" target="#material_id">
 <bind_vertex_input semantic="myUVs" input_semantic="TEXCOORD" />
 </instance_material>
 </technique_common>
 </bind_material>
 </instance_geometry>
 ...
</scene>

 April 2008

Chapter 8:
FX Reference

Introduction

This section covers the elements that compose COLLADA FX.

Elements by Category

This chapter lists elements in alphabetical order. The following tables list elements by category, for ease in
finding related elements.

Effects

annotate Adds a strongly typed annotation remark to the parent object.

bind_vertex_input Binds geometry vertex inputs to effect vertex inputs upon instantiation.

effect Provides a self-contained description of a COLLADA effect.

instance_effect Instantiates a COLLADA effect.

library_effects Provides a library in which to place <effect> assets.

technique (FX) Holds a description of the textures, samplers, shaders, parameters, and passes
necessary for rendering this effect using one method.

technique_hint Adds a hint for a platform of which technique to use in this effect.

Materials

bind (FX) Binds values to uniform inputs of a shader or binds values to effect parameters upon
instantiation.

bind_material Binds a specific material to a piece of geometry, binding varying and uniform parameters
at the same time.

instance_material
(geometry)

Instantiates a COLLADA material resource.

library_materials Provides a library in which to place <material> assets.

material Defines the equations necessary for the visual appearance of geometry and screen-
space image processing

Parameters

array Creates a parameter of a one-dimensional array type.

modifier Provides additional information about the volatility or linkage of a <newparam>
declaration.

newparam Creates a new, named parameter object and assigns it a type and an initial value. See
Chapter 5: Core Elements Reference.

param (reference) References a predefined parameter. See Chapter 5: Core Elements Reference.

sampler_image Instantiates an image targeted for samplers.

sampler_states Allows users to modify an effect’s sampler state from a material.

semantic Provides metadata that describes the purpose of a parameter declaration.

8-2 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

setparam Assigns a new value to a previously defined parameter. See main entry in Chapter 5:
Core Elements Reference.

usertype Creates an instance of a structured class for a parameter.

Profiles

profile_BRIDGE Provides support for referencing effect profiles written with external standards.

profile_CG Declares a platform-specific representation of an effect written in the NVIDIA® Cg
language.

profile_COMMON Opens a block of platform-independent declarations for the common, fixed-function
shader.

profile_GLES Declares platform-specific data types and <technique>s for OpenGL ES.

profile_GLES2 Declares platform-specific data types and <technique>s for OpenGL ES 2.0.

profile_GLSL Declares platform-specific data types and <technique>s for OpenGL Shading
Language.

Rendering

blinn Produces a shaded surface with a Blinn BRDF approximation.

color_clear Specifies whether a render target image is to be cleared, and which value
to use.

color_target Specifies which 
</library_images>

8-36 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

create_3d

Category: Texturing

Profile: External

Introduction

Assists in the manual creation of a 3D 
</library_images>

8-38 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

create_cube

Category: Texturing

Profile: External

Introduction

Initializes a cube 
</library_images>

8-40 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

depth_clear

Category: Rendering

Profile: CG, GLES, GLES2, GLSL

Introduction

Specifies whether a render target image is to be cleared, and which value to use.

Concepts

Before drawing, render target images may need resetting to a blank canvas or to a default. These
<depth_clear> declarations specify which value to use. If no clearing statement is included, the target
image is unchanged as rendering begins.

Attributes

The <depth_clear> element has no attributes in GLES scope.

It has the following attribute in CG, GLES2, and GLSL scope:

index xs:nonNegativeInteger Which of the multiple render targets (MRTs) is being set. The default is
0. Optional.

Related Elements

The <depth_clear> element relates to the following elements:

Parent elements evaluate

Child elements None

Other None

Details

This element contains a single floating-point value that is used to clear a resource.

When this element exists inside a pass, it a cue to the runtime that a particular backbuffer or render-target
resource should be cleared. This means that all existing image data in the resource should be replaced with
the floating-point value provided. This puts the resource into a fresh and known state so that other
operations with this resource execute as expected.

The index attribute identifies the resource that you want to clear. An index of 0 identifies the primary
resource. The primary resource may be the backbuffer or the override provided with an appropriate
<*_target> element (<color_target>, <depth_target>, or <stencil_target>)

Direct3D® 9 class platforms have fairly restrictive rules for setting up MRTs; for example, MRTs can have
only four color buffers, which must be all of the same size and pixel format, and only one depth buffer and
one stencil buffer active for all color buffers. The COLLADA FX declaration is designed to be looser in its
restrictions, so an FX runtime must validate that a particular MRT declaration in a <evaluate> is possible
before attempting to apply it, and flag it as an error if it fails.

Example
<depth_clear index="0">0.0</depth_clear>

 Specification – FX Reference 8-41

 April 2008

depth_target

Category: Rendering

Profile: CG, GLES, GLES2, GLSL

Introduction

Specifies which 

<image name="empty3D">
 <create_3d>
 <size_exact width="128" height="128" depth="128"/>
 <mips levels="0" auto_generate="true"/>
 <format>
 <exact>R8G8B8A8</exact>
 </format>
 </create_3d>
 </image>
</library_images>

8-52 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

fx_common_color_or_texture_type

Category: Rendering

Profile: COMMON

Introduction

A type that describes color attributes of fixed-function shader elements inside <profile_COMMON>
effects.

Concepts

This type describes the attributes and related elements of the following elements:

• <ambient> (FX)
• <diffuse>
• <emission>
• <reflective>
• <specular>
• <transparent>

Attributes

Only <transparent> has an attribute; other elements of type fx_common_color_or_texture_type
have no attributes.

opaque Enumeration

Specifies from which channel to take transparency information. Optional. Valid
values are:

 • A_ONE (the default): Takes the transparency information from the color’s
alpha channel, where the value 1.0 is opaque.

 • RGB_ZERO: Takes the transparency information from the color’s red, green,
and blue channels, where the value 0.0 is opaque, with each channel
modulated independently.

• A_ZERO (the default): Takes the transparency information from the color’s
alpha channel, where the value 0.0 is opaque.

• RGB_ONE: Takes the transparency information from the color’s red, green,
and blue channels, where the value 1.0 is opaque, with each channel
modulated independently.

For additional information, see “Determining Transparency (Opacity)” in
Chapter 7: Getting Started with FX.

Related Elements

Elements of type fx_common_color_or_texture_type relate to the following elements:

Parent elements constant (FX), lambert, phong, blinn

Child elements See the following subsection.

Other None

 Specification – FX Reference 8-53

 April 2008

Child Elements

Note: Exactly one of the child elements <color>, <param>, or <texture> must appear. They are
mutually exclusive.

Name/example Description Default Occurrences

<color> The value is a literal color, specified by four floating-
point numbers in RGBA order. See main entry.

N/A See “Note”

<param> (reference) The value is specified by a reference to a previously
defined parameter in the current scope that can be
cast directly to a <float4>. See main entry.

N/A See “Note”

<texture
 texture="myParam"
 texcoord="myUVs">
 <extra.../>
</texture>

The value is specified by a reference to a previously
defined <sampler2D> object. The texcoord
attribute provides a semantic token, which will be
referenced within <bind_material> to bind an
array of texcoords from a <geometry> instance to
the sampler.
Both attributes are required and are of type
xs:NCName. The <extra> child element can
appear 0 or more times. See its main entry in Core.

N/A See “Note”

Details

The schema does not specify default colors for <ambient>, <diffuse> and other child elements of the
shaders <blinn>, <constant>, <lambert>, and <phong>. If any child element is unspecified, apply
the specified shader equation without that portion. This provides equivalent results to explicitly specifying
black for that child element. For example, the equation for <phong> without <diffuse> would be:

For a discussion on the behavior of <transparent> or <transparency> in determining transparency,
see “Determining Transparency (Opacity)” in the Chapter 7: Getting Started with FX.

Example

8-54 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

fx_common_float_or_param_type

Category: Rendering

Profile: COMMON

Introduction

A type that describes the scalar attributes of fixed-function shader elements inside <profile_COMMON>
effects.

Concepts

This type describes the attributes and related elements of the following elements:

• <index_of_refraction>

• <reflectivity>

• <shininess>

• <transparency>

Attributes

Elements of type fx_common_float_or_param_type have no attributes.

Related Elements

Elements of type fx_common_float_or_param_type relate to the following elements:

Parent elements constant (FX), lambert, phong, blinn

Child elements See the following subsection.

Other None

Child Elements

Note: Exactly one of the child elements <float> or <param> must appear. They are mutually exclusive.

Name/example Description Default Occurrences

<float sid="..."> The value is represented by a literal floating-point scalar, for
example:
 <float> 3.14 </float>
The sid attribute is optional.

None See “Note”

<param> (reference) The value is represented by a reference to a previously
defined parameter that can be directly cast to a floating-
point scalar. See main entry.

None See “Note”

Details

For a discussion on the behavior of <transparent> and <transparency> in determining
transparency, see “Determining Transparency (Opacity)” in the Chapter 7: Getting Started with FX.

Example

 Specification – FX Reference 8-55

 April 2008

fx_sampler_common

Category: Texturing

Profile: External, Effect, CG, COMMON, GLSL, GLES, GLES2

Introduction

A type that describes the sampling states of the <sampler*> elements.

Concepts

This type describes the attributes and related elements of the following elements:

• <sampler1D>

• <sampler2D>

• <sampler3D>

• <samplerCUBE>

• <samplerDEPTH>

• <samplerRECT>

• <samplerStates>

The schema type that inherits from this provides the final details of how these states will be used for
sampling.

Attributes

Elements of this type have no attributes.

Related Elements

The <sampler*> elements relate to the following elements:

Parent elements In Core: newparam, setparam

In FX: array

Child elements See the following subsections.

Other None

Child Elements

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<instance_image> Instantiates a default image from which the sampler is to
consume without material <setparam>. See main entry.

N/A 0 or 1

8-56 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

Name/example Description Default Occurrences

<texcoord
 semantic=... >

Valid only in GLES <newparam>/<sampler2D>. Includes
a semantic attribute that provides a semantic name for the
texcoord channel that the texture unit must use to read
from in the mesh. The channel (array) is mapped here
using <bind_material>. In shader-based programming,
<texcoord>s can be calculated in the shader, but for
fixed-function APIs such as OpenGL ES 1.x, the texture
coordinates must come parameterized with the mesh.
This element contains no data.

None 0 or 1

<wrap_s> Controls texture repeating and clamping of the S
coordinate. Enumeration; see “Details.”

WRAP 0 or 1

<wrap_t> Controls texture repeating and clamping of the T
coordinate. Enumeration; see “Details.”

WRAP 0 or 1

<wrap_p> Controls texture repeating and clamping of the P
coordinate. Enumeration; see “Details.” Not valid in GLES
<sampler2D>.

WRAP 0 or 1

<minfilter> Texture minimization. Enumerated type; see “Details.”
Applying a texture to a primitive implies a mapping from
texture image space to framebuffer image space. In
general, this mapping involves a reconstruction of the
sampled texture image, followed by a homogeneous
warping implied by the mapping to framebuffer space, then
a filtering, followed finally by a resampling of the filtered,
warped, reconstructed image before applying it to a
fragment.

LINEAR 0 or 1

<magfilter> Texture magnification. Enumerated type; see “Details.”
When gamma indicates magnification, this value
determines how the texture value is obtained.

LINEAR 0 or 1

<mipfilter> MIPmap filter. Enumerated type; see “Details.” LINEAR 0 or 1

<border_color> When reading past the edge of the texture address space
based on the wrap modes involving clamps, this color
takes over. Type fx_color_common (four floating-point
numbers in RGBA order). Not valid in GLES
<sampler2D>.

None 0 or 1

<mip_max_level> An xs:unsignedByte, which is the maximum number of
progressive levels that the sampler will evaluate.

0 0 or 1

<mip_min_level> An xs:unsignedByte, which is the minimum
progressive levels to begin to evaluate. Not valid in GLES
<sampler2D>.

0 0 or 1

<mip_bias> A float_type, which biases the gamma (level of detail
parameter) that is used by the sampler to evaluate the
MIPmap chain.

0.0 0 or 1

<max_anisotropy> An xs:unsignedInt, which is the number of samples
that can be used durring anisotropic filtering. Not valid in
GLES <sampler2D>.

1 0 or 1

<extra> See main entry in Core. N/A 0 or more

Details

For more details about all <sampler*> child elements, refer to the OpenGL specification.

The following wrap modes affect the interpretation of s, t, and p texture coordinates outside the [0.0 to 1.0]
range based on the usage of a particular <sampler*> setup. To assist in understanding, the following
table describes the wrap mode enumerations and maps them to OpenGL symbols:

 Specification – FX Reference 8-57

 April 2008

Wrap Mode OpenGL symbol Description

WRAP GL_REPEAT Ignores the integer part of texture coordinates, using only the
fractional part.
Tiles the texture at every integer junction. For example, for u
values between 0 and 3, the texture is repeated three times; no
mirroring is performed.

MIRROR GL_MIRRORED_REPEAT First mirrors the texture coordinate. The mirrored coordinate is
then clamped as described for CLAMP_TO_EDGE.

Flips the texture at every integer junction. For u values between 0
and 1, for example, the texture is addressed normally; between 1
and 2, the texture is flipped (mirrored); between 2 and 3, the
texture is normal again; and so on.

CLAMP GL_CLAMP_TO_EDGE Clamps texture coordinates at all MIPmap levels such that the
texture filter never samples a border texel.
Note: GL_CLAMP takes any texels beyond the sampling border
and substitutes those texels with the border color. So
CLAMP_TO_EDGE is more appropriate. This also works much
better with OpenGL ES where the GL_CLAMP symbol was
removed from the OpenGL ES specification.
Texture coordinates reaching or exceeding the range [0.0, 1.0]
are set just within 0.0 or 1.0 so that the border is not sampled.

BORDER GL_CLAMP_TO_BORDER Clamps texture coordinates at all MIPmaps such that the texture
filter always samples border texels for fragments whose
corresponding texture coordinate is sufficiently far outside the
range [0, 1].
Much like CLAMP, except texture coordinates outside the range
[0.0, 1.0] are set to the border color.

MIRROR_ONCE Takes the absolute value of the texture coordinate (thus,
mirroring around 0), and then clamps to the maximum value.

In GLES, in <newparam>/<sampler2D>, only the following values are valid:

Wrap Mode OpenGL symbol Description

REPEAT

CLAMP

CLAMP_TO_EDGE

MIRRORED_REPEAT Supported by GLES 1.1 only.

Applying a texture to a primitive implies a mapping from texture image space to framebuffer image space.
In general, this mapping involves a reconstruction of the sampled texture image, followed by a
homogeneous warping implied by the mapping to framebuffer space, then a filtering, followed finally by a
resampling of the filtered, warped, reconstructed image before applying it to a fragment. The following table
shows valid values for the filtering elements:

Enumeration value Description Valid in

NONE No minification. <mipfilter>
NEAREST Bilinear <minfilter>, <mipfilter>, <magfilter>

LINEAR Trilinear. <minfilter>, <mipfilter>, <magfilter>

ANISOTROPIC Compensates for distortion caused by the
difference in angle between the polygon
and the plane of the screen. Relies on
max_anisotropy.

<minfilter>

8-58 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

image

Category: Texturing

Profile: External

Introduction

Declares the storage for the graphical representation of an object.

Concepts

Digital imagery comes in three main forms of data: raster, vector, and hybrid. Raster imagery comprises a
sequence of brightness or color values, called picture elements (pixels), that together form the complete
picture. Vector imagery uses mathematical formulae for curves, lines, and shapes to describe a picture or
drawing. Hybrid imagery combines both raster and vector information, leveraging their respective strengths,
to describe the picture.

The 
</library_images>

See the <create_*> elements for additional examples.

 Specification – FX Reference 8-61

 April 2008

include

Category: Shaders

Profile: CG, GLSL

Introduction

Imports source code or precompiled binary shaders into the FX Runtime by referencing an external
resource.

Concepts

Attributes

The <include> element has the following attributes:

sid sid_type Identifier for this source code block or binary shader. Required. For details, see
“Address Syntax” in Chapter 3: Schema Concepts.

url xs:anyURI Location where the resource can be found. Required.

Related Elements

The <include> element relates to the following elements:

Parent elements profile_CG, profile_GLES2, profile_GLSL

Child elements None

Other None

Details

The <include> element itself contains no data. Instead, it uses the url attribute to reference the data.

Example
<include sid="ShinyShader" url="file://assets/source/shader.glsl"/>

8-62 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

init_from

Category: Texturing

Profile: External

Introduction

Initializes an entire image or portions of an image from referenced or embedded data.

Concepts

The exact usage of this element depends on its parent element:

If the element is a child of 
</library_images>

See <create_2d>, <create_3d>, and <create_cube> for additional examples.

8-64 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

instance_effect

Category: Effects

Profile: External

Introduction

Instantiates a COLLADA effect.

Concepts

An effect defines the equations necessary for the visual appearance of geometry and screen-space image
processing.

For details about instance elements in COLLADA, see “Instantiation and External Referencing” in
Chapter 3: Schema Concepts.

<instance_effect> instantiates an effect definition from the <library_effects> and customizes its
parameters.

The url attribute references the effect.

<setparam>s assign values to specific effect and profile parameters that are unique to the instance.

<technique_hint>s indicate the desired or last-used technique inside an effect profile. This allows the
user to maintain the same look-and-feel of the effect instance as the last time that the user used it. Some
runtime render engines may choose new techniques on the fly, but it is important for some effects and for
digital-content-creation consistency to maintain the same visual appearance during authoring.

Attributes

The <instance_effect> element has the following attributes:

sid sid_type
A text string value containing the scoped identifier of this element. This value must
be unique within the scope of the parent element. Optional. For details, see
“Address Syntax” in Chapter 3: Schema Concepts.

name xs:token The text string name of this element. Optional.

url xs:anyURI

The URI of the location of the <effect> element to instantiate. Required. Can refer
to a local instance or external reference.
For a local instance, this is a relative URI fragment identifier that begins with the “#”
character. The fragment identifier is an XPointer shorthand pointer that consists of
the ID of the element to instantiate.
For an external reference, this is an absolute or relative URL.

Related Elements

The <instance_effect> element relates to the following elements:

Parent elements material

Child elements See the following subsection.

Other effect

 Specification – FX Reference 8-65

 April 2008

Child Elements

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<technique_hint> See main entry. N/A 0 or more

<setparam> See main entry in Core. N/A 0 or more

<extra> See main entry in Core. N/A 0 or more

Details

Example
<material id="BlueCarPaint" name="Light blue car paint">
 <instance_effect url="CarPaint">
 <technique_hint profile="CG" platform="PS3" ref="precalc_texture"/>
 <setparam ref="diffuse_color">
 <float3> 0.3 0.25 0.85 </float3>
 </setparam>
 </instance_effect>
</material>

8-66 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

instance_image

Category: Texturing

Profile: External, Effect, CG, COMMON, GLES, GLES2, GLSL

Introduction

Instantiates an image to use in a shader.

Concepts

Typically for use in an effect for shading a geometric surface. However, an image can also be used as a
target for rendering. This way, the picture or data inside the image can be updated dynamically with
advanced FX shading techniques. An image that is the target for rendering, however, must contain the
<renderable> element.

Attributes

The <instance_image> element has the following attributes:

url xs:anyURI Required. The URI of the image asset.

sid sid_type
Optional. A text string value containing the scoped identifier of this element. This
value must be unique within the scope of the parent element. For details, see
“Address Syntax” in Chapter 3: Schema Concepts.

name xs:token Optional.The text string name of this element.

Related Elements

The <instance_image> element relates to the following elements:

Parent elements <sampler*>, color_target, depth_target, stencil_target

Child elements See the following subsection.

Other image, library_images, sampler_image

Child Elements

Name/example Description Default Occurrences

<extra> For storage of extra information that is not defined in
COLLADA. See main entry in Chapter 5: Core Elements
Reference.

N/A 0 or more

Details

The behavior of instantiating an image is typically straight-forward, except for images that are not
renderable. Renderable images have two behavior options. If the renderable image is marked as “shared”
then the picture or data of that image is shared among all instances. As the image is rendered, all instances
will receive the updated data due to sharing. If the renderable image is not shared then a unique copy of
that image is produced for each instance so that rendering to the image instance does not affect other
image instances.

 Specification – FX Reference 8-67

 April 2008

Example

See <color_target>, <depth_target>, and <stencil_target> for more examples.

<newparam sid="surfaceTex">
 <sampler2D>
 <instance_image url="noise1"/>
 </sampler2D>
</newparam>

8-68 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

instance_material
(geometry)

Category: Materials

Profile: External

Introduction

Instantiates a COLLADA material resource.

Concepts

An effect defines the equations necessary for the visual appearance of geometry and screen-space image
processing. A material instantiates an effect, fills its parameters with values, and selects a technique. A
material instance connects the material to geometry or scene items.

For details about instance elements in COLLADA, see “Instantiation and External Referencing” in
Chapter 3: Schema Concepts.

To use a material, it is instantiated and attached to the geometry. The symbol attribute of
<instance_material> indicates to which geometry the material is attached and the target attribute
references the material that it is instantiating.

In addition to identifying the section of the geometry to attach to (symbol), this element also defines how
the vertex stream is remapped and how scene objects are bound to material effect parameters. These are
the connections that can be done only very late and that depend on the scene geometry to which it is
being connected.

<bind> connects a parameter in the material’s effect by semantic to a target in the scene.

<bind_vertex_input> connects a vertex shader’s vertex stream semantics (for example, TEXCOORD2)
to the geometry’s vertex input stream specified by the input_semantic and input_set attributes.

Attributes

The <instance_material> element has the following attributes:

sid sid_type
A text string value containing the scoped identifier of this element. This value must be
unique within the scope of the parent element. Optional. For details, see “Address
Syntax” in Chapter 3: Schema Concepts.

name xs:token The text string name of this element. Optional.

target xs:anyURI

The URI of the location of the <material> element to instantiate. Required. Can
refer to a local instance or external reference.
For a local instance, this is a relative URI fragment identifier that begins with the “#”
character. The fragment identifier is an XPointer shorthand pointer that consists of the
ID of the element to instantiate.
For an external reference, this is an absolute or relative URL.

symbol xs:NCName Which symbol defined from within the geometry this material binds to. Required.

Related Elements

The <instance_material> element relates to the following elements:

Parent elements technique_common in bind_material

Child elements See the following subsection.

Other material

 Specification – FX Reference 8-69

 April 2008

Child Elements

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<bind> (FX) See main entry. N/A 0 or more

<bind_vertex_input> Binds vertex inputs to effect parameters upon
instantiation. See main entry. (Only in
<bind_material>.)

N/A 0 or more

<extra> See main entry in Core. N/A 0 or more

Details

Example
<instance_geometry url="#BeechTree">
 <bind_material>
 <param sid="windAmount" semantic="WINDSPEED" type="float3"/>
 <technique_common>
 <instance_material symbol="leaf" target="#MidsummerLeaf01"/>
 <instance_material symbol="bark" target="#MidsummerBark03">
 <bind semantic="LIGHTPOS1" target="/scene/light01/pos"/>
 <bind_vertex_input semantic="TEXCOORD0"
 input_semantic="BeechTree/texcoord2" input_set="2"/>
 </instance_material>
 </technique_common>
 </bind_material>
</instance_geometry>

8-70 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

instance_material

(rendering)

Category: Rendering

Profile: External

Introduction

Instantiates a COLLADA material resource for a screen effect.

Concepts

For details about instance elements in COLLADA, see “Instantiation and External Referencing” in
Chapter 3: Schema Concepts.

To use a material, it is instantiated. Most instantiated materials are attached to geometry. But, in this case,
we are attaching materials to the scene itself for image- or lens-level processing.

The url attribute references the material that it is instantiating.

It also identifies how scene objects are bound to material effect parameters. These are the connections that
can be done only very late and that depend on the scene geometry to which it is being connected.

<bind> (FX) connects a parameter in the material’s effect by semantic to a target in the scene.

The <technique_override> optionally allows for very specific usage of the material’s technique and
pass subelements rather than the typical pattern of using the material’s <technique_hint> and
rendering each pass. This element is available only when the parent element is a <render> element found
in <evaluate_scene>. This allows added control to invoke the portions of the material as needed to
accomplish their scene effect because scene evaluation effect can be much more procedural and
complicated to evaluate compared to most geometry surface shaders.

in older versions of COLLADA, the user needed to break the effect up into many small effects and materials
to accomplish this, and to manage different parameter tables for each of these broken-up materials. With
this new control, this is no longer necessary.

Attributes

The <instance_material> element has the following attribute:

url xs:anyURI Location where the material can be found. Required.

Related Elements

The <instance_material> element relates to the following elements:

Parent elements evaluate_scene/render

Child elements See the following subsection.

Other material

 Specification – FX Reference 8-71

 April 2008

Child Elements

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<technique_override
 ref=""
 pass="" />

Target specific techniques and passes inside a material
rather than having to split the effects techniques and
passes into multiple effects.
The ref attribute is required and specifies the SID of a
<technique>.

The pass attribute is optional and specifies the SID of
one pass to execute. If not specified (or empty), then all
of the technique’s <pass>es are used.

N/A 0 or 1

<bind> (FX) Binds values to effect parameters upon instantiation. See
main entry.

N/A 0 or more

<extra> See main entry in Core. N/A 0 or more

Details

<evaluate_scene><render>ing is done by instantiating materials instead of instantiating effects
directly so that the parameter setup for a particular scene’s post-processing effect can be used multiple
time or across multiple scenes. Effects such as blur could easily be applied multiple times.to the same
scene or shared among different scenes.

Example
<visual_scene>
<node>
 <!—a really cool scene here-->
</node>
<evaluate_scene sid="blurredGreen">
 <render sid="greenPass">
 <instance_material url="http://127.0.0.1/foo.dae#greenFilter1"/>
 </render>
 <render sid="blur1">
 <instance_material url="http://127.0.0.1/foo.dae#blur1">
 <technique_override ref="main" pass="vertical"/>
 </instance_material>
 </render>
 <render sid="blur2">
 <instance_material url=http://127.0.0.1/foo.dae#blur1>
 <technique_override ref="main" pass="horizontal"/>
 </instance_material>
 </render>
 <render sid="blur3">
 <instance_material url="http://127.0.0.1/foo.dae#blur1">
 <technique_override ref="main" pass="vertical"/>
 </instance_material>
 </render>
 <render sid="blur4">
 <instance_material url="http://127.0.0.1/foo.dae#blur1">
 <technique_override ref="main" pass="horizontal"/>
 </instance_material>
 </render>
</evaluate_scene>
</visual_scene>

8-72 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

lambert

Category: Rendering

Profile: COMMON

Introduction

Produces a diffuse shaded surface that is independent of lighting.

Concepts

Used inside a <profile_COMMON> effect, declares a fixed-function pipeline that produces a diffuse
shaded surface that is independent of lighting.

The result is based on Lambert’s Law, which states that when light hits a rough surface, the light is
reflected in all directions equally. The reflected color is calculated simply as:

where:

• al – A constant amount of ambient light contribution coming from the scene. In the COMMON
profile, this is the sum of all the <light><technique_common><ambient><color> values in
the <visual_scene>.

• N – Normal vector

• L – Light vector

Attributes

The <lambert> element has no attributes.

Related Elements

The <lambert> element relates to the following elements:

Parent elements technique (FX) in profile_COMMON

Child elements See the following subsection.

Other None

Child Elements

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<emission> Declares the amount of light emitted from the surface
of this object.
See fx_common_color_or_texture_type.

N/A 0 or 1

<ambient> (FX) Declares the amount of ambient light reflected from
the surface of this object.
See fx_common_color_or_texture_type.

N/A 0 or 1

<diffuse> Declares the amount of light diffusely reflected from
the surface of this object.
See fx_common_color_or_texture_type.

N/A 0 or 1

 Specification – FX Reference 8-73

 April 2008

Name/example Description Default Occurrences

<reflective> Declares the color of a perfect mirror reflection.
See fx_common_color_or_texture_type.

N/A 0 or 1

<reflectivity> Declares the amount of perfect mirror reflection to be
added to the reflected light as a value between 0.0
and 1.0. See
fx_common_float_or_param_type.

N/A 0 or 1

<transparent> Declares the color of perfectly refracted light.
See fx_common_color_or_texture_type and
“Determining Transparency (Opacity)” in Chapter 7:
Getting Started with FX.

N/A 0 or 1

<transparency> Declares the amount of perfectly refracted light added
to the reflected color as a scalar value between 0.0
and 1.0. See fx_common_float_or_param_type
and “Determining Transparency (Opacity)” in
Chapter 7: Getting Started with FX.

N/A 0 or 1

<index_of_refraction> Declares the index of refraction for perfectly refracted
light as a single scalar index.
See fx_common_float_or_param_type.

N/A 0 or 1

Details

Example
<profile_COMMON>
 <newparam sid="myDiffuseColor">
 <float3> 0.2 0.56 0.35 </float3>
 </newparam>
 <technique sid="T1">
 <lambert>
 <emission><color>1.0 0.0 0.0 1.0</color></emission>
 <ambient><color>1.0 0.0 0.0 1.0</color></ambient>
 <diffuse><param ref="myDiffuseColor"/></diffuse>
 <reflective><color>1.0 1.0 1.0 1.0</color></reflective>
 <reflectivity><float>0.5</float></reflectivity>
 <transparent><color>0.0 0.0 1.0 1.0</color></transparent>
 <transparency><float>1.0</float></transparency>
 </lambert>
 </technique>
</profile_COMMON>

8-74 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

library_effects

Category: Effects

Profile: External

Introduction

Provides a library for the storage of <effect> assets.

Concepts

As data sets become larger and more complex, they become harder to manipulate within a single
container. One approach to managing this complexity is to divide the data into smaller pieces organized by
some criteria. These modular pieces can then be stored in separate resources as libraries.

Attributes

The <library_effects> element has the following attributes:

id xs:ID
A text string containing the unique identifier of the <library_effects> element.
This value must be unique within the instance document. Optional.

name xs:token The text string name of this element. Optional.

Related Elements

The <library_effects> element relates to the following elements:

Parent elements COLLADA

Child elements See the following subsection.

Other None

Child Elements

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<asset> See main entry in Core. N/A 0 or 1

<effect> See main entry. N/A 1 or more

<extra> See main entry in Core. N/A 0 or more

Details

Example

Here is an example of a <library_effects> element:

<library_effects>
 <effect id="fullscreen_effect1">
 ...
 </effect>
</library_effects>

 Specification – FX Reference 8-75

 April 2008

library_images

Category: Texturing

Introduction

Provides a library for the storage of 
</library_images>

8-76 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

library_materials

Category: Materials

Profile: External

Introduction

Provides a library for the storage of <material> assets.

Concepts

An effect defines the equations necessary for the visual appearance of geometry and screen-space image
processing. A material instantiatees an effect, fills its parameters with values, and selects a technique.

As data sets become larger and more complex, they become harder to manipulate within a single
container. One approach to managing this complexity is to divide the data into smaller pieces organized by
some criteria. These modular pieces can then be stored in separate resources as libraries.

Attributes

The <library_materials> element has the following attributes:

id xs:ID A text string containing the unique identifier of the element. This value must be unique
within the instance document. Optional.

name xs:token The text string name of this element. Optional.

Related Elements

The <library_materials> element relates to the following elements:

Parent elements COLLADA

Child elements See the following subsection.

Other None

Child Elements

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<asset> See main entry in Core. N/A 0 or 1

<material> See main entry. N/A 1 or more

<extra> See main entry in Core. N/A 0 or more

Details

Example
Here is an example of a <library_materials> element:

<library_materials>
 <material id="mat1">
 ...
 </material >

 Specification – FX Reference 8-77

 April 2008

 <material id="mat2">
 ...
 </material>

</library_materials>

8-78 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

linker

Category: Shaders

Profile: GLES2

Introduction

Contains command-line or runtime-invocation options for shader linkers to combine shaders into programs.

Concepts

Compiling and linking are part of a complicated process of turning high-level, programmer-friendly code
into a machine executable problem. The details of this process cannot be described here. It is often
specific to the target platform or profile.

Typically, when invoking the linker via the API functions provided by GLSL and GLES2, the API does not
require any options. The baseline GLES2 API also does not explicitly support prelinked binaries. But some
platforms provide this extra opportunity for optimization at the cost of managing all necessary shader
combinations.

Here you may also optionally store the binary results of the compiler, if your platform supports binaries,
rather than having to recompile.

Attributes

The <linker> element has the following attributes:

platform xs:string Required. The subplatform name to distinguish between multiple linker settings.

target xs:string Optional. Target binary profile.

options xs:string Optional. Linker options. See your platform provider’s documentation for details.

Related Elements

The <linker> element relates to the following elements:

Parent elements program

Child elements See the following subsection.

Other None

Child Elements

Name/example Description Default Occurrences

<binary> See main entry. N/A 0 or more

Details

This element contains text that is the linking options given to the tool as a text string. It can optionally
contain a binary representation of the compiled and linked results.

Example
<linker platform="PC" target="assemblyProfile" options="-debug"/>

 Specification – FX Reference 8-79

 April 2008

material

Category: Materials

Profile: External

Introduction

Defines the equations necessary for the visual appearance of geometry and screen-space image
processing.

Concepts

A material instantiates an effect, fills its parameters with values, and selects a technique. It describes the
appearance of a geometric object or may perform screen-space processing to create camera-lens-like
effects such as blurs, blooms, or color filters.

In computer graphics, geometric objects can have many parameters that describe their material properties.
These material properties are the parameters for the rendering computations that produce the visual
appearance of the object in the final output. Likewise, screen-space processing and compositing may also
require many parameters for performing computation.

The specific set of material parameters depend upon the graphics rendering system employed. Fixed
function, graphics pipelines require parameters to solve a predefined illumination model, such as Phong
illumination. These parameters include terms for ambient, diffuse and specular reflectance, for example.

In programmable graphics pipelines, the programmer defines the set of material parameters. These
parameters satisfy the rendering algorithm defined in the vertex and pixel programs.

Attributes

The <material> element has the following attributes:

id xs:ID A text string containing the unique identifier of the element. This value must be
unique within the instance document. Optional.

name xs:token The text string name of this element. Optional.

Related Elements

The <material> element relates to the following elements:

Parent elements library_materials

Child elements See the following subsection.

Other instance_material (geometry)

Child Elements

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<asset> See main entry in Core. N/A 0 or 1

<instance_effect> See main entry. N/A 1

<extra> See main entry in Core. N/A 0 or more

Details

8-80 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

Example

Here is an example of a simple <material> element. The material is contained in a material
<library_materials> element:

<library_materials>
 <material id="Blue">
 <instance_effect url="#phongEffect">
 <setparam ref="AMBIENT">
 <float3>0.0 0.0 0.1</float3>
 </setparam>
 <setparam ref="DIFFUSE">
 <float3>0.15 0.15 0.1</float3>
 </setparam>
 <setparam ref="SPECULAR">
 <float3>0.5 0.5 0.5</float3>
 </setparam>
 <setparam ref="SHININESS">
 <float>16.0</float>
 </setparam>
 </instance_effect>
 </material>
</library_materials>

 Specification – FX Reference 8-81

 April 2008

modifier

Category: Parameters

Profile: External, Effect, CG, COMMON, GLES, GLES2, GLSL

Introduction

Provides additional information about the volatility or linkage of a <newparam> declaration.

Concepts

Allows COLLADA FX parameter declarations to specify constant, external, or uniform parameters.

Attributes

The <modifier> element has no attributes.

Related Elements

The <modifier> element relates to the following elements:

Parent elements newparam

Child elements None

Other None

Details

Contains a linkage modifier. Not every linkage modifier is supported by every FX runtime. Valid modifiers
are:

• CONST

• UNIFORM

• VARYING

• STATIC

• VOLATILE

• EXTERN

• SHARED

Example
<newparam sid="diffuseColor">
 <annotate name="UIWidget"><string>none</string></annotate>
 <semantic>DIFFUSE</semantic>
 <modifier>CONST</modifier>
 <float3> 0.30 0.56 0.12 </float>
</newparam>

8-82 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

pass

Category: Rendering

Profile: CG, GLES, GLES2, GLSL

Introduction

Provides a static declaration of all the render states, shaders, and settings for one rendering pipeline.

Concepts

<pass> describes all the render states and shaders for a rendering pipeline, and is the element that the FX
Runtime is asked to “apply” to the current graphics state before the program can submit geometry.

A static declaration is one that requires no evaluation by a scripting engine or runtime system in order to be
applied to the graphics state. At the time that a <pass> is applied, all render state settings and uniform
parameters are precalculated and known.

Attributes

The <pass> element has the following attribute:

sid sid_type
The optional label for this pass, allowing passes to be specified by name and, if
desired, reordered by the application as the technique is evaluated. Optional. For
details, see “Address Syntax” in Chapter 3: Schema Concepts.

Related Elements

The <pass> element relates to the following elements:

Parent elements technique (FX) (in profile_CG, profile_GLES, profile_GLSL, profile_GLES2)

Child elements See the following subsections.

Other None

Child Elements in GLES Scope

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<annotate> See main entry. None 0 or 1

<states> See main entry. None 0 or 1

<evaluate> See main entry. None 0 or 1

<extra> See main entry in Core. N/A 0 or more

Child Elements in CG, GLES2, or GLSL Scope

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<annotate> See main entry. None 0 or 1

<states> See main entry. None 0 or 1

<program> See main entry. None 0 or 1

<evaluate> See main entry. None 0 or 1

 Specification – FX Reference 8-83

 April 2008

Name/example Description Default Occurrences

<extra> See main entry in Core. N/A 0 or more

Details

Reordering passes can be useful when a single pass is applied repetitively, for example, a “blur” low-pass
convolution may need to be applied to an off-screen texture several times to create the desired effect.

Example

Here is an example of a <pass> contained in a <profile_CG>:

<pass sid="PixelShaderVersion">
 <states>
 <depth_test_enable value="true"/>
 <depth_func value="LEQUAL"/>
 </states>
 <program>
 <shader stage="VERTEX">
 <sources entry="main">
 <import ref="allFunctions"/>
 </sources>
 <compiler platform="PC" target="GLSLV"/>
 <bind symbol="LightPos">
 <param ref="effectLightPos"/>
 </bind>
 </shader>
 <shader stage="FRAGMENT">
 <sources entry="passThruFS">
 <import ref="allFunctions"/>
 </sources>
 <compiler platform="PC" target="GLSLF"/>
 </shader>
 </program>
</pass>

8-84 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

phong

Category: Rendering

Profile: COMMON

Introduction

Produces a shaded surface where the specular reflection is shaded according the Phong BRDF
approximation.

Concepts

Used inside a <profile_COMMON> effect, declares a fixed-function pipeline that produces a specularly
shaded surface that reflects ambient, diffuse, and specular reflection, where the specular reflection is
shaded according the Phong BRDF approximation.

The <phong> shader uses the common Phong shading equation, that is:

where:

• al – A constant amount of ambient light contribution coming from the scene. In the COMMON
profile, this is the sum of all the <light><technique_common><ambient><color> values in
the <visual_scene>.

• N – Normal vector

• L – Light vector

• I – Eye vector

• R – Perfect reflection vector (reflect (L around N))

Attributes

The <phong> element has no attributes.

Related Elements

Parent elements technique (FX) in profile_COMMON

Child elements See the following subsections.

Other None

Child Elements

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<emission> Declares the amount of light emitted from the
surface of this object.
See fx_common_color_or_texture_type.

N/A 0 or 1

<ambient> (FX) Declares the amount of ambient light emitted from
the surface of this object.
See fx_common_color_or_texture_type.

N/A 0 or 1

 Specification – FX Reference 8-85

 April 2008

Name/example Description Default Occurrences

<diffuse> Declares the amount of light diffusely reflected from
the surface of this object.
See fx_common_float_or_param_type.

N/A 0 or 1

<specular> Declares the color of light specularly reflected from
the surface of this object.
See fx_common_color_or_texture_type.

N/A 0 or 1

<shininess> Declares the specularity or roughness of the
specular reflection lobe.
See fx_common_color_or_texture_type.

N/A 0 or 1

<reflective> Declares the color of a perfect mirror reflection.
See fx_common_color_or_texture_type.

N/A 0 or 1

<reflectivity> Declares the amount of perfect mirror reflection to be
added to the reflected light as a value between 0.0
and 1.0.
See fx_common_float_or_param_type.

N/A 0 or 1

<transparent> Declares the color of perfectly refracted light.
See fx_common_color_or_texture_type and
“Determining Transparency (Opacity)” in Chapter 7:
Getting Started with FX.

N/A 0 or 1

<transparency> Declares the amount of perfectly refracted light
added to the reflected color as a scalar value
between 0.0 and 1.0.
See fx_common_float_or_param_type and
“Determining Transparency (Opacity)” in Chapter 7:
Getting Started with FX.

N/A 0 or 1

<index_of_refraction> Declares the index of refraction for perfectly refracted
light as a single scalar index.
See fx_common_float_or_param_type.

N/A 0 or 1

Details

Example

This example has the following properties:

• It is an effect that takes its diffuse color as a parameter. Diffuse is defaulted to (0.2 0.56 0.35) but
can be overridden in the material.

• It does not emit any light or absorb any indirect lighting (ambient).

• It has a little white shiny spot. 50 is a moderately high shininess power term, so the shiny spot
should be fairly sharp.

• It is reflective and will reflect the environment at 5% intensity on top of the standard surface color
calculations.

• It is not transparent. See “Determining Transparency (Opacity)” in Chapter 7: Getting Started with
FX.

<profile_COMMON>
 <newparam sid="myDiffuseColor">
 <float3> 0.2 0.56 0.35 </float3>
 </newparam>
 <technique sid="phong1">
 <phong>

8-86 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

 <emission><color>0.0 0.0 0.0 1.0</color></emission>
 <ambient><color>0.0 0.0 0.0 1.0</color></ambient>
 <diffuse><param ref="myDiffuseColor"/></diffuse>
 <specular><color>1.0 1.0 1.0 1.0</color></specular>
 <shininess><float>50.0</float></shininess>
 <reflective><color>1.0 1.0 1.0 1.0</color></reflective>
 <reflectivity><float>0.051</float></reflectivity>
 <transparent><color>0.0 0.0 0.0 1.0</color></transparent>
 <transparency><float>1.0</float></transparency>
 </phong>
 </technique>
</profile_COMMON>

 Specification – FX Reference 8-87

 April 2008

profile_BRIDGE

Category: Profiles

Profile: BRIDGE

Introduction

Provides support for referencing effect profiles written with external standards.

Concepts

This element enables users to work with systems that are not currently supported directly by COLLADA,
reference existing libraries of effects that were written prior to COLLADA, or use effects written by people
who choose not to use COLLADA.

This element enables effect authors to represent COLLADA FX effects with multiple API, platform, and
common profiles while still including support for additional representations, APIs, and platforms that are not
part of the COLLADA FX schema.

Some example standards that could bridge to FX are Microsoft/HLSL, CgFX (NVIDIA®), and SushiFX (AMD).

This feature:

• Enables the single effect, multiple profiles paradigm to extend the existing COLLADA standard and
schema.

• Future-proofs COLLADA FX for shader languages, effects languages, and API without runtime
procedural effects building that are currently not supported by COLLADA FX or are introduced
between COLLADA schema revisions.

In use, the effect file is imported as a profile. The effect file’s parameters become profile-level parameters.
The parameter’s scoped identifier (SID) and name are the same as the name of the effect-file parameter’s
name. Similarly, techniques and passes would follow the same rule, where their names in the file become
their SIDs for referencing from a <material>’s <setparam> and <technique_hint>, among other
potential places in a COLLADA document.

The imported <profile_BRIDGE> elements encapsulate all the platform-specific values and declarations
for a particular profile. Parameters imported with a <profile_BRIDGE> block are not available to other
profiles.

The <profile_BRIDGE> element defines the clear interface between concrete, platform-specific data
types and the abstract COLLADA data types used in the rest of the document. Parameters declared
outside of this barrier may require casting when used inside a <profile_BRIDGE> block.

For more information, see “Using Profiles for Platform-Specific Effects” in Chapter 7: Getting Started with
FX.

Attributes

The <profile_BRIDGE> element has the following attributes:

id xs:ID A text string containing the unique identifier of the element. This value must be unique
within the instance document. Optional.

platform xs:NCName
The type of platform. This is a vendor-defined character string that indicates the
platform or capability target, most likely an OpenGL ES 2.0 platform. It might target a
specific piece of hardware or hardware family. Optional.

url xs:anyURI The URI of the file to which you are bridging. Required.

8-88 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

Related Elements

The <profile_BRIDGE> element relates to the following elements:

Parent elements effect

Child elements See the following subsections.

Other None

Child Elements

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<asset> For resource management tracking. See main entry in Core. N/A 0 or 1

<extra

A means to store extension data beyond the COLLADA schema
specification. See main entry in Core.

N/A 0 or more

Details

Example
<effect id="uniqueID_12345" name="myEffect">
 <profile_COMMON>
 <constant><emissive><float4>1 1 1 1</float4></emissive></constant>
 </profile_COMMON>
 <profile_BRIDGE platform="DIRECT3D9"
 url="http://www.YourDomain.com/myEffect.fx"/>
</effect>

 Specification – FX Reference 8-89

 April 2008

profile_CG

Category: Profiles

Profile: CG

Introduction

Declares a platform-specific representation of an effect written in the NVIDIA® Cg language.

Concepts

The <profile_CG> element is a profile within an effect that encapsulate all the platform-specific values
and declarations to achieve for a particular visual appearance. In <effect> scope, parameters are
available to all platforms, but parameters declared inside a <profile_CG> block are available only to
shaders that are also inside that profile.

The <profile_CG> element defines the clear interface between concrete, platform-specific data types
and the abstract COLLADA data types used in the rest of the document. Parameters declared outside of
this barrier may require casting when used inside a <profile_CG> block.

For more information, see “Using Profiles for Platform-Specific Effects” in Chapter 7: Getting Started with
FX.

Attributes

The <profile_CG> element has the following attributes:

id xs:ID A text string containing the unique identifier of the element. This value must be unique
within the instance document. Optional.

platform xs:NCName The type of platform. This is a vendor-defined character string that indicates the
platform or capability target for the technique. The default is “PC”. Optional.

Related Elements

The <profile_CG> element relates to the following elements:

Parent elements effect

Child elements See the following subsections.

Other None

Child Elements

Child elements must appear in the following order if present, with the following exception:

• <include> and <code> are interchangeable

Name/example Description Default Occurrences

<asset> See main entry in Core. N/A 0 or 1

<code> See main entry. N/A 0 or more

<include> See main entry. N/A 0 or more

<newparam> See main entry. N/A 0 or more

<technique> (FX) See main entry for attributes and description and the
following subsection for child element details.

N/A 1 or more

<extra> See main entry in Core. N/A 0 or more

8-90 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

Child Elements for <profile_CG> / <technique>

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<asset> See main entry in Core. N/A 0 or 1

<annotate> See main entry. N/A 0 or more

<pass> See main entry. N/A 1 or more

<extra> See main entry in Core. N/A 0 or more

Details

Example
<profile_CG>
 <newparam sid="color">
 <float3> 0.5 0.5 0.5 </float3>
 </newparam>
 <newparam sid="lightpos">
 <semantic>LIGHTPOS0</semantic>
 <float3> 0.0 10.0 0.0 </float3>
 </newparam>
 <newparam sid="world">
 <semantic>WORLD</semantic>
 <float4x4> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </float4x4>
 </newparam>

 <newparam sid="worldIT">
 <semantic>WORLD_INVERSE_TRANSPOSE</semantic>
 <float4x4> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </float4x4>
 </newparam>

 <newparam sid="worldViewProj">
 <semantic>WORLD_VIEW_PROJECTION</semantic>
 <float4x4> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </float4x4>
 </newparam>

<code>
 void VS (
 in varying float4 pos,
 in varying float3 norm,
 in uniform float3 light_pos,
 in uniform float4x4 w: WORLD,
 in uniform float4x4 wit: WORLD_INVERSE_TRANSPOSE,
 in uniform float4x4 wvp: WORLD_VIEW_PROJECTION,
 out varying float4 oPosition : POSITION,
 out varying float3 oNormal : TEXCOORD0,
 out varying float3 oToLight : TEXCOORD1)
 { oPosition = mul(wvp, pos);
 oNormal = mul(wit, float4(norm, 1)).xyz;
 oToLight = light_pos – mul(w, pos).xyz;
 return;
 }

 float3 diffuseFS (
 in uniform float3 flat_color,
 in varying float3 norm : TEXCOORD0,

 Specification – FX Reference 8-91

 April 2008

 in varying float3 to_light : TEXCOORD1) : COLOR
 { return flat_color * saturate(NdotL),
 0.0, 1.0);
 }
 </code>
 <technique id="default" sid="default">
 <pass sid="single_pass">
 <program>
 <shader stage="VERTEX">
 <sources entry="VS">
 <import ref="diffuse-code-1"/>
 </sources>
 <compiler platform="PC" target="GLSLV"/>
 <bind_uniform symbol="light_pos">
 <param ref="lightpos"/>
 </bind_uniform>
 <bind_uniform symbol="w">
 <param ref="world"/>
 </bind_uniform>
 <bind_uniform symbol="wit">
 <param ref="worldIT"/>
 </bind_uniform>
 <bind_uniform symbol="wvp">
 <param ref="worldViewProj"/>
 </bind_uniform>
 </shader>
 <shader stage="FRAGMENT">
 <sources entry="diffuseFX">
 <import ref="diffuse-code-1" />
 </sources>
 <compiler platform="PC" target="GLSLV"/>
 <bind_uniform symbol="flat_color">
 <param ref="color"/>
 </bind_uniform>
 </shader>
 </program>
 </pass>
 </technique>
 </profile_CG>

8-92 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

profile_COMMON

Category: Profiles

Profile: COMMON

Introduction

Opens a block of platform-independent declarations for the common, fixed-function shader.

Concepts

The <profile_COMMON> elements encapsulate all the values and declarations for a platform-independent
fixed-function shader. All platforms are required to support <profile_COMMON>. <profile_COMMON>
effects are designed to be used as the reliable fallback when no other profile is recognized by the current
effects runtime.

For more information, see “Using Profiles for Platform-Specific Effects” in Chapter 7: Getting Started with
FX.

Attributes

The <profile_COMMON> element has the following attribute:

id xs:ID A text string containing the unique identifier of the element. This value must be unique within
the instance document. Optional.

Related Elements

The <profile_COMMON> element relates to the following elements:

Parent elements effect

Child elements See the following subsections.

Other None

Child Elements

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<asset> See main entry in Core. N/A 0 or 1

<newparam Creates a new parameter from a constrained set of
types recognizable by all platforms – <float>,
<float2>, <float3>, <float4>, and
<sampler2D>, with an additional semantic. See
main entry.
Example:
<newparam sid="mySID">
 <semantic> DIFFUSECOLOR
</semantic>
 <float3> 1 2 3 </float3>
</newparam>

N/A 0 or more

<technique> (FX) Declares the only technique for this effect. See main
entry for attributes and description and the following
subsection for child element details.

N/A 1

<extra> See main entry in Core. N/A 0 or more

 Specification – FX Reference 8-93

 April 2008

Child Elements for <profile_COMMON> / <technique>

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<asset> See main entry in Core. N/A 0 or 1

shader_element One of <constant> (FX), <lambert>, <phong>, or
<blinn>.

See main entries.

N/A 0 or more

<extra> See main entry in Core. N/A 0 or more

Details

Example
<profile_COMMON>
 <newparam sid="myDiffuseColor">
 <float3> 0.2 0.56 0.35 </float3>
 </newparam>
 <technique sid="phong1">
 <phong>
 <emission><color>1.0 0.0 0.0 1.0</color></emission>
 <ambient><color>1.0 0.0 0.0 1.0</color></ambient>
 <diffuse><param ref="myDiffuseColor"/></diffuse>
 <specular><color>1.0 0.0 0.0 1.0</color></specular>
 <shininess><float>50.0</float></shininess>
 <reflective><color>1.0 1.0 1.0 1.0</color></reflective>
 <reflectivity><float>0.5</float></reflectivity>
 <transparent><color>0.0 0.0 1.0 1.0</color></transparent>
 <transparency><float>1.0</float></transparency>
 </phong>
 </technique>
</profile_COMMON>

8-94 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

profile_GLES

Category: Profiles

Profile: GLES

Introduction

Declares platform-specific data types and <technique>s for OpenGL ES.

Concepts

The <profile_GLES> elements encapsulate all the platform-specific values and declarations for a
particular profile. In <effect> scope, parameters are available to all platforms, but parameters declared
inside a <profile_GLES> block are available only to shaders that are also inside that profile.

The <profile_GLES> element defines the clear interface between concrete, platform-specific data types
and the abstract COLLADA data types used in the rest of the document. Parameters declared outside of
this barrier may require casting when used inside a <profile_GLES> block.

For more information, see “Using Profiles for Platform-Specific Effects” in Chapter 7: Getting Started with
FX.

Attributes

<profile_GLES> has the following attributes:

id xs:ID A text string containing the unique identifier of the element. This value must be
unique within the instance document. Optional.

platform xs:NMTOKEN The type of platform. This is a vendor-defined character string that indicates the
platform or capability target for the technique. Optional.

Related Elements

The <profile_GLES> elements relate to the following elements:

Parent elements effect

Child elements See the following subsections.

Other None

Child Elements

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<asset> See main entry in Core. N/A 0 or 1

<newparam> Create a new parameter from a constrained set of types
recognizable by all platforms – <float>, <float2>,
<float3>, <float4>, <surface> and <sampler2D>,
with an additional semantic. See main entry.
Example:
<newparam sid="mySID">
 <semantic>
 DIFFUSECOLOR
 </semantic>

N/A 0 or more

 Specification – FX Reference 8-95

 April 2008

Name/example Description Default Occurrences
 <float3>
 1 2 3
 </float3>
</newparam>

<technique> (FX) Declares a technique for this effect. See main entry for
attributes and description and the following subsection for
child element details.

N/A 1 or more

<extra> See main entry in Core. N/A 0 or more

Child Elements for <profile_GLES> / <technique>

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<asset> See main entry in Core. N/A 0 or 1

<annotate> See main entry. N/A 0 or more

<pass> See main entry. N/A 1 or more

<extra> See main entry in Core. N/A 0 or more

Details

Example

The following example shows terrain rendering to transitions between two different ground textures. It
combines gravel texture and grass texture with an alpha transition texture that dictates the per-texel
percentages of how they will blend.

<profile_GLES>
 <newparam sid="gravel">
 <sampler2D/>
 </newparam>
 <newparam sid="grass">
 <sampler2D/>
 </newparam>
 <newparam sid="transition">
 <sampler2D/>
 </newparam>
 <technique sid="main">
 <pass sid="p0">
 <states>
 <texture_pipeline>
 <value>
 <texcombiner>
 <constant> 0.0f, 0.0f, 0.0f, 1.0f </constant>
 <RGB operator="INTERPOLATE">
 <argument source="TEXTURE" operand="SRC_COLOR" sampler="gravel"/>
 <argument source="TEXTURE" operand="SRC_COLOR" sampler="grass"/>
 <argument source="TEXTURE" operand="SRC_ALPHA"
sampler="transition"/>
 </RGB>
 <alpha operator="INTERPOLATE">
 <argument source="TEXTURE" operand="SRC_ALPHA" sampler="gravel"/>
 <argument source="TEXTURE" operand="SRC_ALPHA" sampler="grass"/>
 <argument source="TEXTURE" operand="SRC_ALPHA"
sampler="transition"/>

8-96 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

 </alpha>
 </texcombiner>
 <texcombiner>
 <RGB operator="MODULATE">
 <argument source="PRIMARY" operand="SRC_COLOR"/>
 <argument source="PREVIOUS" operand="SRC_COLOR"/>
 </RGB>
 <alpha operator="MODULATE">
 <argument source="PRIMARY" operand="SRC_ALPHA"/>
 <argument source="PREVIOUS" operand="SRC_ALPHA"/>
 </alpha>
 </texcombiner>
 </value>
 </texture_pipeline>
 </states>
 </pass>
 </technique>
</profile_GLES>

 Specification – FX Reference 8-97

 April 2008

profile_GLES2

Category: Profiles

Profile: GLES2

Introduction

Declares platform-specific data types and <technique>s for OpenGL ES 2.0.

Concepts

<profile_GLES2> provides support for OpenGL ES 2.0 (GLES2). This profile’s structure is similar to
other shader-based profiles, such as Cg and GLSL, but focuses on the scope and details of OpenGL ES
2.0.

Attributes

The <profile_GLES2> element has the following attributes:

id xs:ID A text string containing the unique identifier of the element. This value must
be unique within the instance document. Optional.

language xs:NCName The shading language that is used. Current valid languages are GLSL-ES
and CG. Required.

platforms list_of_names_type

The type of platform. These are vendor-defined character strings that
indicates the platforms or capability targets for the technique. Enables
support for multiple OpenGL ES 2.0 platforms. This may target a specific
piece of hardware or a hardware family. Optional.

Related Elements

The <profile_GLES2> element relates to the following elements:

Parent elements effect

Child elements See the following subsection.

Other None

Child Elements

Child elements must appear in the following order if present, with the following exception:

• <code> and <include> are interchangeable in the order

Name/example Description Default Occurrences

<asset> For resource management tracking. See main entry in Core. N/A 0 or 1

<code> An embedded block of source code. See main entry. N/A 0 or more

<include> A block of source code referenced by URL. See main entry. N/A 0 or more

<newparam> Declarations of new parameters to feed the shaders. See
main entry.

N/A 0 or more

<technique> (FX) A primary or alternative approach to rendering the profile.
Typically LODs. See main entry. See main entry for
attributes and description and the following subsection for
child element details.

N/A 1 or more

8-98 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

Name/example Description Default Occurrences

<extra> A method for storing extension data beyond the COLLADA
schema definition. See main entry in Core.

N/A 0 or 1

Child Elements for <profile_GLES2> / <technique>

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<asset> See main entry in Core. N/A 0 or 1

<annotate> See main entry. N/A 0 or more

<pass> See main entry. N/A 1 or more

<extra> See main entry in Core. N/A 0 or more

Details

Some unique characteristics of the GLES2 API are reflected in this profile:

• Unlike Cg API and Direct3D9 shader objects, which are compiled and used directly, GLES2 API
shader objects are compiled and then linked by the user into a program object.

• The API supports both source code and binary shaders.

– Source code is not necessarily required to be GLSL ES due to support for binary shaders.
• GLES2 supports only a limited subset of the OpenGL 2.x API on the PC. It has been stripped down

to supply only shader-based rendering and the appropriate render states not controlled by shader
source code.

• For more information on GLES2, visit http://www.khronos.org/opengles/2_X/ or the documentation
for the specific vendor for the platform that you are targeting.

• One of the most important differences of GLES2 compared to other COLLADA FX profiles is the
way in which shaders and programs are put together. Shader source code consists of a list of
sources. Segments of source code can be any of the following in any combination or order:
– Sharable embedded <code>

– Sharable referencing <include>

– Code inline in the list, such as #define commands that set up an uber-shader, allowing users
to reuse sharable source code segments by specializing uber-shaders with local inlined
#define commands.

Example

For an additional example, refer to “Appendix B: Profile GLSL and GLES2 Examples.”

<profile_GLES2 language="GLSL-ES">
 <code sid="diffuseVS">
 attribute vec3 sv_Vertex;
 attribute vec3 sv_Normal;

 uniform mat4 wvp;
 uniform mat4 worldView;

 varying vec3 FragmentNormal;

 void main(void)
 {
 gl_Position = wvp * vec4(sv_Vertex.xyz, 1.0);
 FragmentNormal = mat3(worldView) * sv_Normal.xyz;
 }

http://www.khronos.org/opengles/2_X/�

 Specification – FX Reference 8-99

 April 2008

 </code>
 <code sid="hemiFS">
 uniform vec4 surfColor;
 uniform vec4 skyColor;
 uniform vec4 groundColor;
 uniform float hemiContrib;

 varying vec3 FragmentNormal;

 void main (void)
 {
 vec3 normal = normalize(FragmentNormal);

 float NdotL = max(0.0, dot(normal, vec3(0.0, 0.0, 1.0)));
 float NdotUp = dot(normal, vec3(0.0, 1.0, 0.0));

 float mixer = (NdotUp + 1.0) * 0.5;
 vec4 diffuse = NdotL * surfColor;
 vec4 hemiColor = NdotL * mix(groundColor, skyColor, mixer);

 gl_FragColor = diffuse + hemiContrib * hemiColor;
 }
 </code>
 <newparam sid="wvp">
 <semantic>WorldViewProjection</semantic>
 <mat4>1 2 3 4 0 1 0 0 0 0 1 0 0 0 0 1 </mat4>
 </newparam>
 <newparam sid="worldView">
 <semantic>WorldView</semantic>
 <mat4>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 </mat4>
 </newparam>
 <newparam sid="surfColor">
 <semantic>COLOR</semantic>
 <vec4>0.8 0.8 0.8 0 </vec4>
 </newparam>
 <newparam sid="skyColor">
 <semantic>COLOR</semantic>
 <vec4>0 0 0.5 0 </vec4>
 </newparam>
 <newparam sid="groundColor">
 <semantic>COLOR</semantic>
 <vec4>0 0.5 0 0 </vec4>
 </newparam>
 <newparam sid="hemiContrib">
 <float>1</float>
 </newparam>
 <technique sid="t0">
 <pass sid="p0">
 <states>
 <depth_test_enable value="true"/>
 <depth_func value="Less"/>
 <cull_face_enable value="true"/>
 <cull_face value="Back"/>
 <front_face value="CCW"/>
 </states>
 <program>
 <shader stage="VERTEX">
 <sources><import ref="diffuseVS"/></sources>
 </shader>
 <shader stage="FRAGMENT">

8-100 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

 <sources> <import ref="hemiFS"/> </sources>
 </shader>
 <bind_uniform symbol="wvp">
 <param ref="wvp"/>
 </bind_uniform>
 <bind_uniform symbol="worldView">
 <param ref="worldView"/>
 </bind_uniform >
 <bind_uniform symbol="surfColor">
 <param ref="surfColor"/>
 </bind_uniform>
 <bind_uniform symbol="skyColor">
 <param ref="skyColor"/>
 </bind_uniform >
 <bind_uniform symbol="groundColor">
 <param ref="groundColor"/>
 </bind_uniform>
 <bind_uniform symbol="hemiContrib">
 <param ref="hemiContrib"/>
 </bind_uniform>
 </program>
 <evaluate/>
 </pass>
 </technique>
</profile_GLES2>

 Specification – FX Reference 8-101

 April 2008

profile_GLSL

Category: Profiles

Profile: GLSL

Introduction

Declares platform-specific data types and <technique>s for OpenGL Shading Language.

Concepts

The <profile_GLSL> elements encapsulate all the platform-specific values and declarations for a
particular profile. In <effect> scope, parameters are available to all platforms, but parameters declared
inside a <profile_GLSL> block are available only to shaders that are also inside that profile.

The <profile_GLSL> element defines the clear interface between concrete, platform-specific data types
and the abstract COLLADA data types used in the rest of the document. Parameters declared outside of
this barrier may require casting when used inside a <profile_GLSL> block.

For more information, see “Using Profiles for Platform-Specific Effects” in Chapter 7: Getting Started with
FX.

Attributes

<profile_GLSL> has the following attributes:

id xs:ID A text string containing the unique identifier of the element. This value must be unique
within the instance document. Optional.

platform xs:NMTOKEN The type of platform. This is a vendor-defined character string that indicates the
platform or capability target for the technique. Optional. The default is “PC”.

Related Elements

The <profile_GLSL> elements relate to the following elements:

Parent elements effect

Child elements See the following subsections.

Other None

Child Elements

Child elements must appear in the following order if present, with the following exception:

• <include> and <code> are interchangeable.

Name/example Description Default Occurrences

<asset> See main entry in Core. N/A 0 or 1

<code> See main entry. N/A 0 or more

<include> See main entry. N/A 0 or more

<newparam> Creates a new parameter from a constrained set of
types recognizable by all platforms – <float>,
<float2>, <float3>, <float4>, <surface>
and <sampler2D>, with an additional semantic.
See main entry.

N/A 0 or more

8-102 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

Name/example Description Default Occurrences

Example:
<newparam sid="mySID">
 <semantic>
 DIFFUSECOLOR
 </semantic>
 <float3>
 1 2 3
 </float3>
</newparam>

<technique> (FX) Declares a technique for this effect. See main entry for
attributes and description and the following
subsection for child element details.

N/A 1 or more

<extra> See main entry in Core. N/A 0 or more

Child Elements for <profile_GLSL> / <technique>

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<asset> See main entry in Core. N/A 0 or 1

<annotate> See main entry. N/A 0 or more

<pass> See main entry. N/A 1 or more

<extra> See main entry in Core. N/A 0 or more

Details

Example

See Appendix B: Profile GLSL and GLES2 Examples.

 Specification – FX Reference 8-103

 April 2008

program

Category: Shaders

Profile: CG, GLSL, GLES2

Introduction

Links multiple shaders together to produce a pipeline for geometry processing.

Concepts

Describes how to create shaders, such as a vertex shader and a fragment shader. Additionally, this
describes how to link them to produce a program and bind them to effect parameters for GLES2 and GLSL
(for Cg shaders, bind to effect parameters instead of programs).

Attributes

The <program> element has no attributes.

Related Elements

The <program> element relates to the following elements:

Parent elements pass

Child elements See the following subsections.

Other None

Child Elements in CG Scope

Within the scope of <profile_CG>, child elements must appear in the following order if present:

Name/example Description Default Occurrences

<shader> Setup and compilation information for shaders such as
vertex and pixel shaders. See main entry.

N/A 0 or more

Child Elements in GLSL Scope

Within the scope of <profile_GLSL>, child elements must appear in the following order if present:

Name/example Description Default Occurrences

<shader> Setup and compilation information for shaders such as
vertex and pixel shaders. See main entry.

N/A 0 or more

<bind_attribute> Information for binding the shader variables to effect
parameters. See main entry.

N/A 0 or more

<bind_uniform> Binds a uniform shader variable to a parameter or a value.
See main entry.

N/A 0 or more

Child Elements in GLES2 Scope

Within the scope of <profile_GLES2>, child elements must appear in the following order if present:

Name/example Description Default Occurrences

<shader> See above. N/A 0 or more

8-104 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

Name/example Description Default Occurrences

<linker> Information regarding shaders together or capturing the
results of linking. See main entry.

N/A 0 or more

<bind_attribute> Information for binding the shader variables to effect
parameters. See main entry.

N/A 0 or more

<bind_uniform> Binds a uniform shader variable to a parameter or a value.
See main entry.

N/A 0 or more

Details

Example
<program>
 <shader stage="VERTEX"> ... </shader>
 <shader stage="FRAGMENT"> ... </shader>
</program>

 Specification – FX Reference 8-105

 April 2008

render

Category: Rendering

Profile: External

Introduction

Describes one effect pass to evaluate a scene.

Concepts

This element indicates one pass of rendering for camera lens or screen post-processing. Rendering can be
straightforward without a particular material or effect such as layered rendering, or it can add special
effects, typically called postprocessing effects, lens effects, or scene effects such as blur, bloom, or depth
of field.

Within this element you can also change your camera and the layers of the scene that you are rendering for
each pass.

Attributes

The <render> element has the following attributes:

name xs:token The text string name of this element. Optional.

sid sid_type
A text string value containing the scoped identifier of this element. This value
must be unique within the scope of the parent element. Optional. For details,
see “Address Syntax” in Chapter 3: Schema Concepts.

camera_node xs:anyURI Refers to a node that contains a camera describing the viewpoint from which to
render this compositing step. Optional.

Related Elements

The <render> element relates to the following elements:

Parent elements evaluate_scene

Child elements See the following subsections.

Other None

Child Elements

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<layer> Specifies which layer or layers to render in this compositing
step while evaluating the scene. Contains layer names of
type xs:NCName. This element has no attributes.

None 0 or more

<instance_material>
(rendering)

Specifies which effect to render in this compositing step
while evaluating the scene. See main entry.

N/A 0 or 1

<extra> See main entry in Core. N/A 0 or more

Details

Example

See <visual_scene>.

8-106 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

RGB

Category: Texturing

Profile: GLES

Introduction

Defines the RGB portion of a <texture_pipeline> command for combiner-mode texturing operation.

Concepts

See <texcombiner> for details about assignments and overall concepts.

Attributes

The <RGB> element has the following attributes:

operator Enumeration

Infers the use of glTexEnv(TEXTURE_ENV, COMBINE_RGB,
operator). See <texcombiner> for details. Valid values are:
REPLACE | MODULATE | ADD | ADD_SIGNED |
INTERPOLATE | SUBTRACT | DOT3_RGB | DOT3_RGBA

scale float_type
Infers the use of glTexEnv(TEXTURE_ENV, RGB_SCALE, scale).
See <texcombiner> for details.

Related Elements

The <RGB> element relates to the following elements:

Parent elements texcombiner

Child elements See the following subsections.

Other None

Child Elements

Name/example Description Default Occurrences

<argument> Sets up the arguments required for the given operator to be
executed. See main entry.

None 1 to 3

Details

See <texcombiner> for details.

Example

See <texture_pipeline>.

 Specification – FX Reference 8-107

 April 2008

sampler1D

Category: Texturing

Profile: COMMON, CG, GLSL

Introduction

Declares a one-dimensional texture sampler.

Concepts

Attributes

The <sampler1D> element has no attributes.

Related Elements

The <sampler1D> element relates to the following elements:

Parent elements In Core: newparam, setparam

In FX: array

Child elements See fx_sampler_common.

Other None

Details

Use of <wrap_t> and <wrap_p> has no effect on the results because 1D samplers do not use the t and
p coordinate axes.

Example

This example repeats a texture across a surface regardless of any UVs exceeding the 0-to-1 range. It
linearly magnifies the texture if it needs to be enlarged. It does trilinear filtering if the texels are smaller than
the pixels being rasterized. This reads from a one-dimensional surface, that is, a surface that is N by 1
(height=1).

<sampler1D>
 <wrap_s>WRAP</wrap_s>
 <minfilter>LINEAR</minfilter>
 <magfilter>LINEAR</magfilter>
</sampler1D>

8-108 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

sampler2D

Category: Texturing

Profile: External, Effect, CG, COMMON, GLES2, GLSL

Introduction

Declares a two-dimensional texture sampler.

Concepts

Attributes

The <sampler2D> element has no attributes.

Related Elements

The <sampler2D> element relates to the following elements:

Parent elements In Core: newparam, setparam

In FX: array

Child elements See fx_sampler_common.

Other None

Details

Use of <wrap_p> has no effect on the results because 1D samplers do not use the p coordinate axis.

Example

This is an example of the most common sampler type. It repeats a texture across a surface regardless of
any UVs exceeding the 0-to-1 range. It linearly magnifies the texture if it needs to be enlarged. It does
trilinear filtering if the texels are smaller than the pixels being rasterized.

<sampler2D>
 <wrap_s>WRAP</wrap_s>
 <wrap_t>WRAP</wrap_t>
 <minfilter>LINEAR</minfilter>
 <magfilter>LINEAR</magfilter>
</sampler2D>

 Specification – FX Reference 8-109

 April 2008

sampler3D

Category: Texturing

Profile: External, Effect, CG, COMMON, GLES2, GLSL

Introduction

Declares a three-dimensional texture sampler.

Concepts

Attributes

The <sampler3D> element has no attributes.

Related Elements

The <sampler3D> element relates to the following elements:

Parent elements In Core: newparam, setparam

In FX: array

Child elements See fx_sampler_common.

Other None

Details

Example

This example repeats a texture across a surface regardless of any UVs exceeding the 0-to-1 range. It
linearly magnifies the texture if it needs to be enlarged. It does trilinear filtering if the texels are smaller than
the pixels being rasterized.

This example does this typical sampling operation from a three-dimensional texture, that is, from a volume.
This is common for reading from noise, patterns such as wood, and medical imaging.

<sampler3D>
 <wrap_s>WRAP</wrap_s>
 <wrap_t>WRAP</wrap_t>
 <wrap_p>WRAP</wrap_p>
 <minfilter>LINEAR</minfilter>
 <magfilter>LINEAR</magfilter>
</sampler3D>

8-110 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

samplerCUBE

Category: Texturing

Profile: External, Effect, CG, COMMON, GLES2, GLSL

Introduction

Declares a texture sampler for cube maps.

Concepts

Attributes

The <samplerCUBE> element has no attributes.

Related Elements

The <samplerCUBE> element relates to the following elements:

Parent elements In Core: newparam, setparam

In FX: array

Child elements See fx_sampler_common.

Other None

Details

Use of <wrap_p> has no effect on the results because 1D samplers do not use the p coordinate axis.

Example

This example reads from a cube map surface. The shader passes in a 3D vector that is a normal. That
normal points to a location on one of the six sides of a cube map. Samples around the coordinate that it
points to are filtered and returned.

<samplerCUBE>
 <wrap_s>WRAP</wrap_s>
 <wrap_t>WRAP</wrap_t>
 <minfilter>LINEAR</minfilter>
 <magfilter>LINEAR</magfilter>
</samplerCUBE>

 Specification – FX Reference 8-111

 April 2008

samplerDEPTH

Category: Texturing

Profile: External, Effect, CG, COMMON, GLSL

Introduction

Declares a texture sampler for depth maps.

Concepts

Attributes

The <samplerDEPTH> element has no attributes.

Related Elements

The <samplerDEPTH> element relates to the following elements:

Parent elements In Core: newparam, setparam

In FX: array

Child elements See fx_sampler_common.

Other None

Details

Use of <wrap_p> has no effect on the results because 1D samplers do not use the p coordinate axis.

Example

This example repeats a texture across a surface regardless of any UVs exceeding the 0-to-1 range. It
linearly magnifies the texture if it needs to be enlarged. It does trilinear filtering if the texels are smaller than
the pixels being rasterized. If the surface is depth data, it performs percentage closest filtering. This
technique provides better results when sampling depth maps for uses such as shadow maps.

<samplerDEPTH>
 <wrap_s>WRAP</wrap_s>
 <wrap_t>WRAP</wrap_t>
 <minfilter>LINEAR</minfilter>
 <magfilter>LINEAR</magfilter>
</samplerDEPTH>

8-112 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

samplerRECT

Category: Texturing

Profile: External, Effect, CG, COMMON, GLSL

Introduction

Declares a RECT texture sampler.

Concepts

RECT textures are an a OpenGL extension; they are not the same as nonsquare 2D textures. It is typically
used as a render target or screen space processing, not as a general nonsquare replacement for
<sampler2D>. For more information, see www.opengl.org/registry/specs/ARB/texture_rectangle.txt

Attributes

The <samplerRECT> element has no attributes.

Related Elements

The <samplerRECT> element relates to the following elements:

Parent elements In Core: newparam, setparam

In FX: array

Child elements See fx_sampler_common.

Other None

Details

RECT reflects OpenGL RECT samplers. It is not supported in DirectX. RECT is two dimensional. It does not
support MIP-mapping. Samples use a float2_type that is in the range [0-to-width, 0-to-height] as
opposed to the 2D 0-to-1 range.

Example

RECT samplers are very limited. They do not support MIP-mapping, so this trivial example is actually the
most common usage:

<samplerRECT>
 <instance_image url="myRenderableSurface"/>
</samplerRECT>

http://www.opengl.org/registry/specs/ARB/texture_rectangle.txt�

 Specification – FX Reference 8-113

 April 2008

sampler_image

Category: Parameters

Profile: External

Introduction

Instantiates an image targeted for samplers.

Concepts

This is not a sampler type but is, instead, an element used to modify an existing sampler. The sampler
<newparam> identified by the parent <setparam> receives the instantiated image.

See <instance_image> for more details. This derived type has no specific extension but was renamed
for clarity in this situation.

Attributes

See <instance_image>.

Related Elements

The <sampler_image> element relates to the following elements:

Parent elements <instance_effect>/<setparam>

Child elements See instance_image

Other None

Example
<material id="foo-smiley">
 <instance_effect url="foo">
 <setparam ref="bar">
 <sampler_image url="smiley-1"/>
 </setparam>
 </instance_effect>
</material>

8-114 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

sampler_states

Category: Materials

Profile: N/A

Introduction

Allows users to modify an effect’s sampler state from a material.

Concepts

This element is derived from the sampler base type, fx_sampler_states. See “fx_sampler_common”
for a list of valid states. This includes all elements except <instance_image>. A material’s <setparam>
ref attribute points at an effect’s <newparam> containing a <sampler*>. This modifies only the
sampling state of the sampler, whereas <sampler_image> is used to change the sampler’s
<instance_image>, which is the more common operation.

Most effect authoring tools will not support this feature because it is not common in earlier FX frameworks
where it was not possible to modify the sampler state outside of the effect. It is included in COLLADA to be
forward-looking, based on flexible game-engine technology and that GL historically carries the sampler
states with the texture object.

Attributes

The <sampler_states> element has no attributes.

Related Elements

The <sampler_states> element relates to the following elements:

Parent elements setparam

Child elements See fx_sampler_common.

Other None

Details

Example
<material>
 <instance_effect url="simpleTexturing">
 <setparam ref="texParam">
 <sampler_states>
 <wrap_s>WRAP</wrap_s>
 <wrap_t>WRAP</wrap_t>
 </sampler_states>
 </setparam>
 <setparam ref="texParam">
 <sampler_image url="smiley.jpg"/>
 </setparam>
 </instance_effect>
</material>

 Specification – FX Reference 8-115

 April 2008

semantic

Category: Parameters

Profile: External, Effect, CG, COMMON, GLES, GLES2, GLSL

Introduction

Provides metadata that describes the purpose of a parameter declaration.

Concepts

Semantics describe the intention or purpose of a parameter declaration in an effect, using an overloaded
concept. Semantics have been used historically to describe three different type of metadata:

• A hardware resource allocated to a parameter, for example, TEXCOORD2, NORMAL.

• A value from the scene graph or graphics API that is being represented by this parameter, for
example, MODELVIEWMATRIX, CAMERAPOS, VIEWPORTSIZE.

• A user-defined value that will be set by the application at run time when the effect is being initialized,
for example, DAMAGE_PERCENT, MAGIC_LEVEL.

Semantics are used by the <instance_geometry> declaration inside <node> to bind effect parameters
to values and data sources that can be found in the scene graph, using the <bind_material>
mechanism used to disambiguate this mapping.

Attributes

The <semantic> element has no attributes.

Related Elements

The <semantic> element relates to the following elements:

Parent elements newparam

Child elements None

Other None

Details

There is currently no standard set of semantics. This element can contain any xs:NCName defined by your
application.

See “The Common Profile” in Chapter 3: Schema Concepts.

Example
<newparam sid="diffuseColor">
 <annotate name="UIWidget"><string>none</string></annotate>
 <semantic>DIFFUSE</semantic>
 <modifier>EXTERN</modifier>
 <float3> 0.30 0.56 0.12 </float>
</newparam>

8-116 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

shader

Category: Shaders

Profile: CG, GLES2, GLSL

Introduction

Declares and prepares a shader for execution in the rendering pipeline of a <pass>.

Concepts

Executable shaders are small functions or programs that execute at a specific stage in the rendering
pipeline. Shaders can be built from preloaded, precompiled binaries or dynamically generated at run time
from embedded source code. The <shader> declaration holds all the settings necessary for compiling a
shader and binding values or predefined parameters to the uniform inputs.

COLLADA FX allows declarations of both source code shaders and precompiled binaries, depending on
support from the FX Runtime. Precompiled binary shaders already have the target profile specified for them
at compile time, but to allow COLLADA readers to validate declarations involving precompiled shaders
without having to load and parse the binary headers, profile declarations are still required.

Previously defined parameters, shader source, and binaries are considered merged into the same
namespace / symbol table/source code string so that all symbols and functions are available to shader
declarations, allowing common functions to be used in several shaders in a <technique>, for example,
common lighting code. FX Runtimes that use the concept of “translation units” are allowed to name each
source code block to break up the namespace.

Shaders with uniform input parameters can bind either previously defined parameters or literal values to
these values during shader declaration, allowing compilers to inline literal and constant values.

Attributes

The <shader> element has the following attributes:

stage Enumeration Required. In which pipeline stage this programmable shader is designed to
execute. Valid values are: TESSELATION, VERTEX, GEOMETRY, and FRAGMENT.

Related Elements

The <shader> element relates to the following elements:

Parent elements program

Child elements See the following subsections.

Other None

Child Elements in CG Scope

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<sources> Concatenates the source code for the shader from one
or more sources. See main entry.

N/A 1

<compiler> Compiler information for one or more platforms. See main
entry.

None 0 or more

<bind_uniform> See main entry. N/A 0 or more

 Specification – FX Reference 8-117

 April 2008

Child Elements in GLES2 Scope

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<sources> Concatenates the source code for the shader from one
or more sources. See main entry.

N/A 1

<compiler> Compiler information for one or more platforms. See main
entry.

None 0 or more

<extra> See main entry in Core. N/A 0 or more

Child Elements in GLSL Scope

Child elements must appear in the following order if present:

Name/example Description Default Occurrences

<sources> Concatenates the source code for the shader from one
or more sources. See main entry.

N/A 1

<extra> See main entry in Core. N/A 0 or more

Details

Example

Here is an example for <profile_CG>:

<shader stage="VERTEX">
 <sources entry="main">
 <import ref="thinFilm2"/>
 </sources>
 <compiler platform="PC" target = "ARBVP1" />
 <bind_uniform symbol="lightpos">
 <param ref="LightPos_03"/>
 </bind_uniform>
</shader>

8-118 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

sources

Category: Shaders

Profile: CG, GLES2, GLSL

Introduction

Concatenates the source code for a shader from one or more sources.

Concepts

Sometimes shader source code cannot be contained in only one included file or one embedded code
block. Instead, auser may want to combine common sets of code blocks.

As one example, users could author an uber-shader and bring it into the <sources> using an <import>,
then add one or more <inline> blocks above that <import> to customize the uber-shader with
#defines.

As another example, a user writes a pluggable main-function shader that defines a basic equation and
relies on function calls for extensibility. The user can then use multiple child elements of the source to
combine the function blocks with the main function.

Attributes

The <sources> element has the following attribute:

entry xs:token
Required in CG scope; optional in GLES2 scope; not valid in others. Entry-function
name for this shader. This identifies the name of the entry point after the child
elements are concatenated. In GLES2, the default is “main”.

Related Elements

The <sources> element relates to the following elements:

Parent elements shader

Child elements See the following subsection.

Other None

Child Elements

Child elements can apper in any order, in any combination:

Name/example Description Default Occurrences

<inline> An xs:string containing code, such as a #define for
an imported shader.

None 1 or more

<import ref=""> The <import> element itself contains no data. The
required ref attribute contains the SID of a <code> or
<include> element at the profile or effect level. The
ref attribute is required. For details, see “Address
Syntax” in Chapter 3: Schema Concepts.

None 0 or more

Details

 Specification – FX Reference 8-119

 April 2008

Example
<sources entry="main">
 <inline>#define DEBUG 1\n</inline>
 <inline>#define ENVIRONMENT_LOOKUP 1\n</inline>
 <inline>#define PROFILE PHONG\n</inline>
 <import ref="uber"/>
</sources>

8-120 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

states

Category: Rendering

Profile: CG, GLES, GLES2, GLSL

Introduction

Contains all rendering states to set up for the parent pass.

Concepts

Different FX profiles have different sets of render states available for use within the <pass> element.

Attributes

The <states> element has no attributes.

Related Elements

The <states> element relates to the following elements:

Parent elements pass (in profile_CG, profile_GLES, profile_GLES2, profile_GLSL)

Child elements See the following subsection.

Other None

Child Elements

Child elements, representing render states, can appear in any combination, in any order.

Each render state – or its child elements if it has any, as shown in the render states table – has the
following attributes:

value type as specified in the
following table

Provides a value specific to the render state. Either value or param,
but not both, is required unless stated otherwise in the table.

param sidref_type

Refers to the SID of a parameter whose value is to be used for the
render state as an alternative to value. Not valid if value is specified.
For details about SIDREFs, see “Address Syntax” in Chapter 3:
Schema Concepts.

index
type as specified in the
following table

Generally this is a numeric value. Not every render state has this
attribute, and its meaning varies depending on the render state; refer
to the render states table. Required or Optional is also specified there.

For example:

<newparam sid= "someparam" ... />
<setparam ref="someparam">1 1 1 0</setparam>
 ...
<states>
 <fog_color value="0 0 0 0" />
 <fog_enable = "true"/>
 <light_ambient value="1 1 1 0" index="0"/>
 <light_diffuse param="someparam" />
</states>

Further descriptions of the following render states are in the OpenGL specification. Refer to:

• http://www.opengl.org/documentation/specs/

• http://www.opengl.org/registry/

http://www.opengl.org/documentation/specs/�
http://www.opengl.org/registry/�

 Specification – FX Reference 8-121

 April 2008

The following table shows the render states for <profile_CG>, <profile_GLSL>, <profile_GLES>,
and <profile_GLES2>. Render states are identical in all profiles except for differences noted for the
GLES and GLES2 profile.

Render states and their child elements Valid values or types, and index
attribute

GLES GLES2

alpha_func
 func

 value

NEVER, LESS, LEQUAL, EQUAL,
GREATER, NOTEQUAL, GEQUAL,
ALWAYS
Float value 0.0 – 1.0 inclusive

Yes No

alpha_test_enable Boolean Yes No
auto_normal_enable Boolean No No
blend_color float4_type No Yes
blend_enable Boolean Yes Yes
blend_equation FUNC_ADD, FUNC_SUBTRACT,

FUNC_REVERSE_SUBTRACT, MIN,
MAX

No Yes

blend_equation_separate
 rgb
 alpha

Same as blend_equation values No Yes

blend_func
 src
 dest

(both src and dest)
ZERO, ONE, SRC_COLOR,
ONE_MINUS_SRC_COLOR,
DEST_COLOR,
ONE_MINUS_DEST_COLOR,
SRC_ALPHA,
ONE_MINUS_SRC_ALPHA,
DST_ALPHA,
ONE_MINUS_DST_ALPHA,
CONSTANT_COLOR,
ONE_MINUS_CONSTANT_COLOR,
CONSTANT_ALPHA,
ONE_MINUS_CONSTANT_ALPHA,
SRC_ALPHA_SATURATE

Yes Yes

blend_func_separate
 src_rgb
 dest_rgb
 src_alpha
 dest_alpha

Same as blend_func values No Yes

clip_plane float4_type
Index attribute specifies which clip
plane. Required.

Yes
bool4_typ
e

No

clip_plane_enable Boolean
Index attribute specifies which clip
plane. Optional.

Yes No

color_logic_op_enable Boolean Yes No
color_mask bool4_type Yes Yes
color_material
 face

 mode

FRONT, BACK, FRONT_AND_BACK
EMISSION, AMBIENT, DIFFUSE,
SPECULAR,
AMBIENT_AND_DIFFUSE

No No

8-122 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

Render states and their child elements Valid values or types, and index
attribute

GLES GLES2

color_material_enable
Enables or disables the use of
<color_material>. That is, indicates
when runtimes should perform glEnable
(GL_COLOR_MATERIAL) or glDisable
(GL_COLOR_MATERIAL) (or equivalants).

Boolean Yes

No

cull_face FRONT, BACK, FRONT_AND_BACK Yes Yes
cull_face_enable Boolean Yes Yes
depth_bounds float2_type No No
depth_bounds_enable Boolean No No
depth_clamp_enable Boolean No No
depth_func NEVER, LESS, LEQUAL, EQUAL,

GREATER, NOTEQUAL, GEQUAL,
ALWAYS

Yes Yes

depth_mask Boolean Yes Yes
depth_range float2_type Yes Yes
depth_test_enable Boolean Yes Yes
dither_enable Boolean Yes Yes
fog_color float4_type Yes No
fog_coord_src FOG_COORDINATE,

FRAGMENT_DEPTH
No No

fog_density float_type Yes No
fog_enable Boolean Yes No
fog_end float_type Yes No
fog_mode LINEAR, EXP, EXP2 Yes No
fog_start float_type Yes No
front_face CW, CCW Yes Yes
light_ambient float4_type

Index attribute specifies which light.
Required.

Yes No

light_constant_attenuation float_type
Index attribute specifies which light.
Required.

Yes No

light_diffuse float4_type
Index attribute specifies which light.
Required.

Yes No

light_enable Boolean
Index attribute specifies which light.
Required.

Yes No

light_linear_attenuation float_type
Index attribute specifies which light.
Required.

Yes No

light_model_ambient float4_type Yes NO
light_model_color_control SINGLE_COLOR,

SEPARATE_SPECULAR_COLOR
No No

light_model_local_viewer_enable Boolean No No
light_model_two_side_enable Boolean Yes No
light_position float4_type

Index attribute specifies which light.
Required.

Yes No

 Specification – FX Reference 8-123

 April 2008

Render states and their child elements Valid values or types, and index
attribute

GLES GLES2

light_quadratic_attenuation float_type
Index attribute specifies which light.
Required.

Yes No

light_specular float4_type
Index attribute specifies which light.
Required.

Yes No

light_spot_cutoff float_type
Index attribute specifies which light.
Required.

Yes No

light_spot_direction float3_type
Index attribute specifies which light.
Required.

Yes No

light_spot_exponent float_type
Index attribute specifies which light.
Required.

Yes No

lighting_enable Boolean Yes no
line_smooth_enable Boolean No No
line_stipple int2_type No No
line_stipple_enable Boolean No No
line_width float_type Yes Yes
logic_op CLEAR, AND, AND_REVERSE, COPY,

AND_INVERTED, NOOP, XOR, OR,
NOR, EQUIV, INVERT,
OR_REVERSE, COPY_INVERTED,
NAND, SET

Yes No

logic_op_enable Boolean No No
material_ambient float4_type Yes No
material_diffuse float4_type Yes No
material_emission float4_type Yes No
material_shininess float_type Yes No
material_specular float4_type Yes No
model_view_matrix float4x4_type Yes No
multisample_enable Boolean Yes No
normalize_enable Boolean Yes No
point_distance_attenuation float3_type Yes No
point_fade_threshold_size float_type Yes No
point_size float_type Yes Yes
point_size_enable Boolean No Yes - GLES2

only
point_size_max float_type Yes No
point_size_min float_type Yes No
point_smooth_enable Boolean No No
polygon_mode
 face
 mode

FRONT, BACK, FRONT_AND_BACK
POINT, LINE, FILL

No No

polygon_offset float2_type Yes Yes
polygon_offset_fill_enable Boolean Yes Yes
polygon_offset_line_enable Boolean No No
polygon_offset_point_enable Boolean No No
polygon_smooth_enable Boolean No No
polygon_stipple_enable Boolean No No
projection_matrix float4x4_type Yes No

8-124 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

Render states and their child elements Valid values or types, and index
attribute

GLES GLES2

rescale_normal_enable Boolean Yes No
sample_alpha_to_coverage_enable Boolean Yes Yes
sample_alpha_to_one_enable Boolean Yes No
sample_coverage
 value
 invert

float_type
Boolean

No Yes - GLES2
only

sample_coverage_enable Boolean Yes No
scissor int4_type Yes Yes
scissor_test_enable Boolean Yes Yes
shade_model FLAT, SMOOTH Yes No
stencil_func
 func

 ref
 mask

NEVER, LESS, LEQUAL, EQUAL,
GREATER, NOTEQUAL, GEQUAL,
ALWAYS
Unsigned byte
Unsigned byte

Yes Yes

stencil_func_separate
 front
 back
 ref
 mask

(For front and back)
NEVER, LESS, LEQUAL, EQUAL,
GREATER, NOTEQUAL, GEQUAL,
ALWAYS
Unsigned byte
Unsigned byte

No Yes

stencil_mask int_type Yes Yes
stencil_mask_separate
 face
 mask

FRONT, BACK, FRONT_AND_BACK
Unsigned byte

No Yes

stencil_op
 fail
 zfail
 zpass

(For fail, zfail, and zpass)
KEEP, ZERO, REPLACE, INCR,
DECR, INVERT, INCR_WRAP,
DECR_WRAP

Yes Yes

stencil_op_separate
 face
 fail
 zfail
 zpass

FRONT, BACK, FRONT_AND_BACK
(For fail, zfail, and zpass:)
KEEP, ZERO, REPLACE, INCR,
DECR, INVERT, INCR_WRAP,
DECT_WRAP

No Yes

stencil_test_enable Boolean Yes Yes
texture_env_color float4_type

Index attribute specifies which texture
unit. Optional.

No (see
<texture_
pipeline>)

No

texture_env_mode xs:string
Index attribute specifies which texture
unit. Optional.

No (see
<texture_
pipeline>)

No

texture_pipeline String – the name of the
<texture_pipeline> parameter.

Yes - GLES
only

No

texture1D sampler1D type
Index attribute specifies which texture
unit. Required.

No No

texture1D_enable Boolean
Index attribute specifies which texture
unit. Optional.

No No

 Specification – FX Reference 8-125

 April 2008

Render states and their child elements Valid values or types, and index
attribute

GLES GLES2

texture2D sampler2D type
Index attribute specifies which texture
unit. Required.

No (see
<texture_
pipeline>)

No

texture2D_enable Boolean
Index attribute specifies which texture
unit. Optional.

No (see
<texture_
pipeline>)

No

texture3D sampler3D type
Index attribute specifies which texture
unit. Required.

No No

texture3D_enable Boolean
Index attribute specifies which texture
unit. Optional.

No No

textureCUBE samplerCUBE type
Index attribute specifies which texture
unit. Required.

No No

textureCUBE_enable Boolean
Index attribute specifies which texture
unit. Optional.

No No

textureDEPTH samplerDEPTH type
Index attribute specifies which texture
unit. Required.

No No

textureDEPTH samplerDEPTH type
Index attribute specifies which texture
unit. Required.

No No

textureDEPTH_enable Boolean
Index attribute specifies which texture
unit. Optional.

No No

textureRECT samplerRECT type
Index attribute specifies which texture
unit. Required.

No No

textureRECT_enable Boolean
Index attribute specifies which texture
unit. Optional.

No No

Details

Example
<states>
 <depth_test_enable value="true"/>
 <depth_func value="Less"/>
 <cull_face_enable value="true"/>
 <cull_face value="Back"/>
 <front_face value="CCW"/>
</states>

8-126 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

stencil_clear

Category: Rendering

Profile: CG, GLES, GLES2, GLSL

Introduction

Specifies whether a render target image is to be cleared, and which value to use.

Concepts

Before drawing a render target image may need resetting to a blank canvas or default. The
<stencil_clear> declarations specify which value to use. If no clearing statement is included, the target
image remains unchanged as rendering begins.

Attributes

The <stencil_clear> element has the following attribute:

index xs:nonNegativeInteger Which of the multiple render targets is being set. The default is 0.
Optional.

Related Elements

The <stencil_clear> element relates to the following elements:

Parent elements evaluate

Child elements None

Other None

Details

This element contains an xs:byte that is the value used to clear a resource.

When this element exists inside a pass, it a cue to the runtime that a particular backbuffer or render-target
resource should be cleared. This means that all existing image data in the resource should be replaced with
the value provided. This puts the resource into a fresh and known state so that other operations with this
resource execute as expected.

The index attribute identifies the resource that you want to clear. An index of 0 identifies the primary
resource. The primary resource may be the backbuffer or the override provided with an appropriate
<*_target> element (<color_target>, <depth_target>, or <stencil_target>).

Direct3D® 9 class platforms have fairly restrictive rules for setting up MRTs; for example, only four color
buffers, which must be all of the same size and pixel format, and only one depth buffer and one stencil
buffer active for all color buffers. The COLLADA FX declaration is designed to be looser in its restrictions, so
an FX runtime must validate that a particular MRT declaration in a <pass> is possible before attempting to
apply it, and flag it as an error if it fails.

Example
<stencil_clear index="0">0</stencil_clear>

 Specification – FX Reference 8-127

 April 2008

stencil_target

Category: Rendering

Profile: CG, GLES, GLES2, GLSL

Introduction

Specifies which 
 <image id="bump" name="bump">
 <init_from>
 <ref>./Textured_Bump_GLSL/FieldstoneBumpDOT3.tga</ref>
 </init_from>
 </image>
 </library_images>
 <library_geometries>
 <geometry id="Model_E0_MESH_0_REF_1_lib" name="Model_E0_MESH_0_REF_1">
 <mesh>

 Specification – Appendix B: Profile GLSL and GLES2 Examples B-5

 April 2008

 <source id="Model_E0_MESH_0_REF_1_lib_positions" name="position">
 <float_array id="Model_E0_MESH_0_REF_1_lib_positions_array"
count="9">-50 -50 0 0 50 0 50 -50 0</float_array>
 <technique_common>
 <accessor count="3"
source="#Model_E0_MESH_0_REF_1_lib_positions_array" stride="3">
 <param name="X" type="float"></param>
 <param name="Y" type="float"></param>
 <param name="Z" type="float"></param>
 </accessor>
 </technique_common>
 </source>
 <source id="Model_E0_MESH_0_REF_1_lib_normals" name="normal">
 <float_array id="Model_E0_MESH_0_REF_1_lib_normals_array" count="9">0
0 -1 0 0 -1 0 0 -1</float_array>
 <technique_common>
 <accessor count="3"
source="#Model_E0_MESH_0_REF_1_lib_normals_array" stride="3">
 <param name="X" type="float"></param>
 <param name="Y" type="float"></param>
 <param name="Z" type="float"></param>
 </accessor>
 </technique_common>
 </source>
 <source id="Model_E0_MESH_0_REF_1_lib_texcoords" name="texcoords">
 <float_array id="Model_E0_MESH_0_REF_1_lib_texcoords_array"
count="6">0 0 0.5 1 1 0</float_array>
 <technique_common>
 <accessor count="3"
source="#Model_E0_MESH_0_REF_1_lib_texcoords_array" stride="2">
 <param name="X" type="float"></param>
 <param name="Y" type="float"></param>
 </accessor>
 </technique_common>
 </source>
 <source id="Model_E0_MESH_0_REF_1_lib_tangents" name="tangent">
 <float_array id="Model_E0_MESH_0_REF_1_lib_tangents_array" count="9">1
0 0 1 0 0 1 0 0</float_array>
 <technique_common>
 <accessor count="3"
source="#Model_E0_MESH_0_REF_1_lib_tangents_array" stride="3">
 <param name="X" type="float"></param>
 <param name="Y" type="float"></param>
 <param name="Z" type="float"></param>
 </accessor>
 </technique_common>
 </source>
 <source id="Model_E0_MESH_0_REF_1_lib_binormals" name="binormal">
 <float_array id="Model_E0_MESH_0_REF_1_lib_binormals_array"
count="9">0 1 0 0 0 0 0 1 0</float_array>
 <technique_common>
 <accessor count="3"
source="#Model_E0_MESH_0_REF_1_lib_binormals_array" stride="3">
 <param name="X" type="float"></param>
 <param name="Y" type="float"></param>
 <param name="Z" type="float"></param>
 </accessor>
 </technique_common>
 </source>
 <vertices id="Model_E0_MESH_0_REF_1_lib_vertices">

B-6 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

 <input semantic="POSITION"
source="#Model_E0_MESH_0_REF_1_lib_positions"></input>
 <input semantic="NORMAL"
source="#Model_E0_MESH_0_REF_1_lib_normals"></input>
 <input semantic="TEXCOORD"
source="#Model_E0_MESH_0_REF_1_lib_texcoords"></input>
 <input semantic="TANGENT"
source="#Model_E0_MESH_0_REF_1_lib_tangents"></input>
 <input semantic="BINORMAL"
source="#Model_E0_MESH_0_REF_1_lib_binormals"></input>
 </vertices>
 <triangles count="1" material="Textured_Bump_E0_MP_MAT">
 <input offset="0" semantic="VERTEX"
source="#Model_E0_MESH_0_REF_1_lib_vertices"></input>
 <p>0 1 2</p>
 </triangles>
 </mesh>
 </geometry>
 </library_geometries>
 <scene>
 <instance_visual_scene url="#VisualSceneNode"></instance_visual_scene>
 </scene>
</COLLADA>

Example: <profile_GLES2>

This is a simple example of a COLLADA instance document that uses <profile_GLES2>.

<?xml version="1.0" encoding="UTF-8"?>
<COLLADA xmlns="http://www.collada.org/2008/03/COLLADASchema" version="1.5.0">
 <asset>
 <contributor>
 <author></author>
 <authoring_tool>RenderMonkey</authoring_tool>
 <comments>Output from RenderMonkey COLLADA Exporter</comments>
 <copyright></copyright>
 <source_data></source_data>
 </contributor>
 <created>2008-03-27T20:31:07Z</created>
 <modified>2008-03-27T20:31:07Z</modified>
 <unit meter="0.01" name="centimeter"></unit>
 <up_axis>Y_UP</up_axis>
 </asset>
 <library_visual_scenes>
 <visual_scene id="VisualSceneNode" name="untitled">
 <node id="Model_E0_MESH_0_REF_1" name="Model_E0_MESH_0_REF_1">
 <instance_geometry url="#Model_E0_MESH_0_REF_1_lib">
 <bind_material>
 <technique_common>
 <instance_material symbol="Textured_Bump_E0_MP_MAT"
target="#Textured_Bump_E0_MP_MAT">
 <bind_vertex_input semantic="rm_Binormal"
input_semantic="BINORMAL"></bind_vertex_input>
 <bind_vertex_input semantic="rm_Tangent"
input_semantic="TANGENT"></bind_vertex_input>
 </instance_material>
 </technique_common>
 </bind_material>

 Specification – Appendix B: Profile GLSL and GLES2 Examples B-7

 April 2008

 </instance_geometry>
 </node>
 </visual_scene>
 </library_visual_scenes>
 <library_materials>
 <material id="Textured_Bump_E0_MP_MAT" name="Textured_Bump_E0_MP_MAT">
 <instance_effect url="#Textured_Bump_E0_MP_FX">
 <technique_hint platform="PC-OGL" profile="GLES2"
ref="Textured_Bump_E0_MP_TECH"></technique_hint>
 <setparam ref="fSpecularPower_E0_P0">
 <float>25</float>
 </setparam>
 <setparam ref="fvAmbient_E0_P0">
 <float4>0.368627 0.368421 0.368421 1</float4>
 </setparam>
 <setparam ref="fvDiffuse_E0_P0">
 <float4>0.886275 0.885003 0.885003 1</float4>
 </setparam>
 <setparam ref="fvEyePosition_E0_P0">
 <float3>0 0 100</float3>
 </setparam>
 <setparam ref="fvLightPosition_E0_P0">
 <float3>-100 100 100</float3>
 </setparam>
 <setparam ref="fvSpecular_E0_P0">
 <float4>0.490196 0.488722 0.488722 1</float4>
 </setparam>
 <setparam ref="matViewProjection_E0_P0">
 <float4x4>-2.22782 -0.0171533 0.0525642 1.05927e-007 -0.0458611
2.04965 -1.27486 4.56546e-005 0.0159767 0.528878 0.849727 199.199 0.0159607
0.528349 0.848877 200</float4x4>
 </setparam>
 <setparam ref="matViewProjectionInverseTranspose_E0_P0">
 <float4x4>-0.448593 -0.00345406 0.0105843 1.11448e-010 -0.00786852
0.351669 -0.218728 -1.53279e-008 3.18896 105.564 169.606 -0.999002 -3.17619 -
105.142 -168.927 1</float4x4>
 </setparam>
 </instance_effect>
 </material>
 </library_materials>
 <library_effects>
 <effect id="Textured_Bump_E0_MP_FX">
 <profile_GLES2 language="">
 <code sid="
Vertex_Program_E0_P0_VP">uniform mat4 matViewProjectionInverseTranspose;
uniform mat4 matViewProjection;
uniform vec3 fvLightPosition;
uniform vec3 fvEyePosition;

varying vec2 Texcoord;
varying vec3 ViewDirection;
varying vec3 LightDirection;

attribute vec4 rm_Vertex;
attribute vec4 rm_TexCoord0;
attribute vec4 rm_Normal;
attribute vec4 rm_Binormal;
attribute vec4 rm_Tangent;

void main(void)

B-8 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

{
 gl_Position = matViewProjection * rm_Vertex;
 Texcoord = rm_TexCoord0.xy;

 vec4 fvObjectPosition = matViewProjection * rm_Vertex;

 vec3 fvViewDirection = fvEyePosition - fvObjectPosition.xyz;
 vec3 fvLightDirection = fvLightPosition - fvObjectPosition.xyz;

 vec3 fvNormal = (matViewProjectionInverseTranspose * rm_Normal).xyz;
 vec3 fvBinormal = (matViewProjectionInverseTranspose * rm_Binormal).xyz;
 vec3 fvTangent = (matViewProjectionInverseTranspose * rm_Tangent).xyz;

 ViewDirection.x = dot(fvTangent, fvViewDirection);
 ViewDirection.y = dot(fvBinormal, fvViewDirection);
 ViewDirection.z = dot(fvNormal, fvViewDirection);

 LightDirection.x = dot(fvTangent, fvLightDirection.xyz);
 LightDirection.y = dot(fvBinormal, fvLightDirection.xyz);
 LightDirection.z = dot(fvNormal, fvLightDirection.xyz);

}</code>
 <code sid="
Fragment_Program_E0_P0_FP">#ifdef GL_FRAGMENT_PRECISION_HIGH
 // Default precision
 precision highp float;
#else
 precision mediump float;
#endif

uniform vec4 fvAmbient;
uniform vec4 fvSpecular;
uniform vec4 fvDiffuse;
uniform float fSpecularPower;

uniform sampler2D baseMap;
uniform sampler2D bumpMap;

varying vec2 Texcoord;
varying vec3 ViewDirection;
varying vec3 LightDirection;

void main(void)
{
 vec3 fvLightDirection = normalize(LightDirection);
 vec3 fvNormal = normalize((texture2D(bumpMap, Texcoord).xyz * 2.0) - 1.0
);
 float fNDotL = dot(fvNormal, fvLightDirection);

 vec3 fvReflection = normalize(((2.0 * fvNormal) * fNDotL) -
fvLightDirection);
 vec3 fvViewDirection = normalize(ViewDirection);
 float fRDotV = max(0.0, dot(fvReflection, fvViewDirection));

 vec4 fvBaseColor = texture2D(baseMap, Texcoord);

 vec4 fvTotalAmbient = fvAmbient * fvBaseColor;
 vec4 fvTotalDiffuse = fvDiffuse * fNDotL * fvBaseColor;
 vec4 fvTotalSpecular = fvSpecular * (pow(fRDotV, fSpecularPower));

 Specification – Appendix B: Profile GLSL and GLES2 Examples B-9

 April 2008

 gl_FragColor = (fvTotalAmbient + fvTotalDiffuse + fvTotalSpecular);

}</code>
 <newparam sid="fSpecularPower_E0_P0">
 <float>25</float>
 </newparam>
 <newparam sid="fvAmbient_E0_P0">
 <vec4>0.368627 0.368421 0.368421 1</vec4>
 </newparam>
 <newparam sid="fvDiffuse_E0_P0">
 <vec4>0.886275 0.885003 0.885003 1</vec4>
 </newparam>
 <newparam sid="fvEyePosition_E0_P0">
 <vec3>0 0 100</vec3>
 </newparam>
 <newparam sid="fvLightPosition_E0_P0">
 <vec3>-100 100 100</vec3>
 </newparam>
 <newparam sid="fvSpecular_E0_P0">
 <vec4>0.490196 0.488722 0.488722 1</vec4>
 </newparam>
 <newparam sid="matViewProjection_E0_P0">
 <semantic>ViewProjection</semantic>
 <mat4>-2.22782 -0.0458611 0.0159767 0.0159607 -0.0171533 2.04965
0.528878 0.528349 0.0525642 -1.27486 0.849727 0.848877 1.05927e-007 4.56546e-005
199.199 200</mat4>
 </newparam>
 <newparam sid="matViewProjectionInverseTranspose_E0_P0">
 <semantic>ViewProjectionInverseTranspose</semantic>
 <mat4>-0.448593 -0.00786852 3.18896 -3.17619 -0.00345406 0.351669
105.564 -105.142 0.0105843 -0.218728 169.606 -168.927 1.11448e-010 -1.53279e-008
-0.999002 1</mat4>
 </newparam>
 <newparam sid="baseMap_Sampler">
 <sampler2D>
 <instance_image url="base"></instance_image>
 <minfilter>LINEAR</minfilter>
 <magfilter>LINEAR</magfilter>
 <mipfilter>LINEAR</mipfilter>
 </sampler2D>
 </newparam>
 <newparam sid="bumpMap_Sampler">
 <sampler2D>
 <instance_image url="bump"></instance_image>
 <minfilter>LINEAR</minfilter>
 <magfilter>LINEAR</magfilter>
 <mipfilter>LINEAR</mipfilter>
 </sampler2D>
 </newparam>
 <technique sid="Textured_Bump_E0_MP_TECH">
 <pass sid="Pass_0">
 <program>
 <shader stage="VERTEX">
 <sources>
 <import ref="Vertex_Program_E0_P0_VP"></import>
 </sources>
 </shader>
 <shader stage="FRAGMENT">
 <sources>
 <import ref="Fragment_Program_E0_P0_FP"></import>

B-10 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

 </sources>
 </shader>
 <bind_uniform symbol="fSpecularPower">
 <param ref="fSpecularPower_E0_P0"></param>
 </bind_uniform>
 <bind_uniform symbol="fvAmbient">
 <param ref="fvAmbient_E0_P0"></param>
 </bind_uniform>
 <bind_uniform symbol="fvDiffuse">
 <param ref="fvDiffuse_E0_P0"></param>
 </bind_uniform>
 <bind_uniform symbol="fvEyePosition">
 <param ref="fvEyePosition_E0_P0"></param>
 </bind_uniform>
 <bind_uniform symbol="fvLightPosition">
 <param ref="fvLightPosition_E0_P0"></param>
 </bind_uniform>
 <bind_uniform symbol="fvSpecular">
 <param ref="fvSpecular_E0_P0"></param>
 </bind_uniform>
 <bind_uniform symbol="matViewProjection">
 <param ref="matViewProjection_E0_P0"></param>
 </bind_uniform>
 <bind_uniform symbol="matViewProjectionInverseTranspose">
 <param ref="matViewProjectionInverseTranspose_E0_P0"></param>
 </bind_uniform>
 <bind_uniform symbol="baseMap">
 <param ref="baseMap_Sampler"></param>
 </bind_uniform>
 <bind_uniform symbol="bumpMap">
 <param ref="bumpMap_Sampler"></param>
 </bind_uniform>
 </program>
 </pass>
 </technique>
 </profile_GLES2>
 <extra>
 <technique profile="RenderMonkey">
 <RenderMonkey_TimeCycle>
 <param type="float">120.000000</param>
 </RenderMonkey_TimeCycle>
 </technique>
 </extra>
 </effect>
 </library_effects>
 <library_images>
 <image id="base" name="base">
 <init_from>
 <ref>./Textured_Bump_GLES2/Fieldstone.tga</ref>
 </init_from>
 </image>
 <image id="bump" name="bump">
 <init_from>
 <ref>./Textured_Bump_GLES2/FieldstoneBumpDOT3.tga</ref>
 </init_from>
 </image>
 </library_images>
 <library_geometries>
 <geometry id="Model_E0_MESH_0_REF_1_lib" name="Model_E0_MESH_0_REF_1">
 <mesh>

 Specification – Appendix B: Profile GLSL and GLES2 Examples B-11

 April 2008

 <source id="Model_E0_MESH_0_REF_1_lib_positions" name="position">
 <float_array id="Model_E0_MESH_0_REF_1_lib_positions_array"
count="9">-50 -50 0 0 50 0 50 -50 0</float_array>
 <technique_common>
 <accessor count="3"
source="#Model_E0_MESH_0_REF_1_lib_positions_array" stride="3">
 <param name="X" type="float"></param>
 <param name="Y" type="float"></param>
 <param name="Z" type="float"></param>
 </accessor>
 </technique_common>
 </source>
 <source id="Model_E0_MESH_0_REF_1_lib_normals" name="normal">
 <float_array id="Model_E0_MESH_0_REF_1_lib_normals_array" count="9">0
0 -1 0 0 -1 0 0 -1</float_array>
 <technique_common>
 <accessor count="3"
source="#Model_E0_MESH_0_REF_1_lib_normals_array" stride="3">
 <param name="X" type="float"></param>
 <param name="Y" type="float"></param>
 <param name="Z" type="float"></param>
 </accessor>
 </technique_common>
 </source>
 <source id="Model_E0_MESH_0_REF_1_lib_texcoords" name="texcoords">
 <float_array id="Model_E0_MESH_0_REF_1_lib_texcoords_array"
count="6">0 0 0.5 1 1 0</float_array>
 <technique_common>
 <accessor count="3"
source="#Model_E0_MESH_0_REF_1_lib_texcoords_array" stride="2">
 <param name="X" type="float"></param>
 <param name="Y" type="float"></param>
 </accessor>
 </technique_common>
 </source>
 <source id="Model_E0_MESH_0_REF_1_lib_tangents" name="tangent">
 <float_array id="Model_E0_MESH_0_REF_1_lib_tangents_array" count="9">1
0 0 1 0 0 1 0 0</float_array>
 <technique_common>
 <accessor count="3"
source="#Model_E0_MESH_0_REF_1_lib_tangents_array" stride="3">
 <param name="X" type="float"></param>
 <param name="Y" type="float"></param>
 <param name="Z" type="float"></param>
 </accessor>
 </technique_common>
 </source>
 <source id="Model_E0_MESH_0_REF_1_lib_binormals" name="binormal">
 <float_array id="Model_E0_MESH_0_REF_1_lib_binormals_array"
count="9">0 1 0 0 0 0 0 1 0</float_array>
 <technique_common>
 <accessor count="3"
source="#Model_E0_MESH_0_REF_1_lib_binormals_array" stride="3">
 <param name="X" type="float"></param>
 <param name="Y" type="float"></param>
 <param name="Z" type="float"></param>
 </accessor>
 </technique_common>
 </source>
 <vertices id="Model_E0_MESH_0_REF_1_lib_vertices">

B-12 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

 <input semantic="POSITION"
source="#Model_E0_MESH_0_REF_1_lib_positions"></input>
 <input semantic="NORMAL"
source="#Model_E0_MESH_0_REF_1_lib_normals"></input>
 <input semantic="TEXCOORD"
source="#Model_E0_MESH_0_REF_1_lib_texcoords"></input>
 <input semantic="TANGENT"
source="#Model_E0_MESH_0_REF_1_lib_tangents"></input>
 <input semantic="BINORMAL"
source="#Model_E0_MESH_0_REF_1_lib_binormals"></input>
 </vertices>
 <triangles count="1" material="Textured_Bump_E0_MP_MAT">
 <input offset="0" semantic="VERTEX"
source="#Model_E0_MESH_0_REF_1_lib_vertices"></input>
 <p>0 1 2</p>
 </triangles>
 </mesh>
 </geometry>
 </library_geometries>
 <scene>
 <instance_visual_scene url="#VisualSceneNode"></instance_visual_scene>
 </scene>
</COLLADA>

 April 2008

Glossary

animation curve – A 2D function defined by a set of key frames and the interpolation among them.

arc – A connection between nodes.

backbuffer – The viewport buffer into which the computer normally renders in a double-buffered system.

attribute – An XML element can have zero or more attributes. Attributes are given within the start tag and
follow the tag name. Each attribute is a name-value pair. The value portion of an attribute is always
surrounded by quotation marks (" "). Attributes provide semantic information about the element on which
they are bound. For example:

<tagName attribute="value">

COLLADA – Collaborative Design Activity.

COLLADA document – A file containing COLLADA XML elements that describe certain digital assets.

COLLADA schema – An XML schema document that defines all valid COLLADA elements.

comment – XML files can contain comment text. Comments are identified by special markup of the
following form:

<!-- This is an XML comment -->

CV – Control vertex. A control point on a spline curve.

DAE (or .dae) – Digital Asset Exchange, meaning the format in which COLLADA stores information about
digital assets, that is, a COLLADA document.

DCC – Digital content creation.

effect scope – The declaration space that is inside an <effect> element but not within any specific
<profile_*> element.

element – An XML document consists primarily of elements. An element is a block of information that is
bounded by tags at the beginning and end of the block. Elements can be nested, producing a hierarchical
data set.

function curve – Same as animation curve.

frustum – see viewing frustum.

FX runtime – The assumed underlying library of code that handles the creation, use, and management of
shaders, source code, parameters, and other effects properties.

HDR – High dynamic range.

id – An element’s identifier, which can be referenced as part of a URI and which is unique within an
instance document. See “Address Syntax” in Chapter 3: Schema Concepts.

IDREF – A reference to an id. See “Address Syntax” in Chapter 3: Schema Concepts.

instance – An occurrence of an object, the result of instantiating a copy or version of the object.

instance document – A COLLADA document.

instantiation – The creation of a copy (instance) of an object.

key frame – The beginning or ending point of an animated object. Consists of a 2D data sampling,
consisting of the “input” (usually a point in time) and the “output” (the value being animated).

MIP map – An optimized collection of bitmap images for a texture.

morph target – A mesh that can be blended with other meshes.

G-2 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

multiple render targets (MRT) – Rendering to multiple drawing buffers simultaneously.

name – The name of an XML attribute generally has some semantic meaning in relation to the element to
which it belongs. For example:

<Array size="5" type="xs:float">
 1.0 2.0 3.0 4.0 5.0
</Array>

This shows an element named Array with two attributes, size and type. The size attribute specifies how
large the array is and the type attribute specifies that the array contains floating-point data.

node – Points of information within a scene graph. COLLADA uses node to refer to interior (branch) nodes
rather than to exterior (leaf) nodes.

path – see arc.

profile – A structure in which to gather effects information for a specific platform or environment.

scene graph – The hierarchical structure of a scene, represented in COLLADA by the <scene> element’s
content. Specifically, a directed acyclic graph (DAG) or tree data structure that contains nodes of visual
information and related data.

shorthand pointer – The value of the id attribute of an element in an instance document. This is a URI
fragment identifier that conforms to XPointer syntax.

sid – An element’s scoped identifier; similar to an id except that it is unique only within a certain scope, not
necessarily in an entire instance document. See “Address Syntax” in Chapter 3: Schema Concepts.

tag – Each XML element begins with a start tag. The syntax of a start tag includes a name surrounded by
angle brackets as follows:

<tagName>

Each XML element ends with an end tag. The syntax of an end tag is as follows:

</tagName>

Between the start and end tags is an arbitrary block of information.

tone mapping – The combination of spectral sampling and dynamic range remapping, performed as the
last step of image synthesis (rendering).

validation – XML by itself does not describe any one document structure or schema. XML provides a
mechanism by which an XML document can be validated. The target or instance document provides a link
to schema document. Using the rules given in the schema document, an XML parser can validate the
instance document’s syntax and semantics. This process is called validation.

value – In XML, the value of an attribute is always textual data during parsing.

viewing frustum – The region of space that appears in a camera’s view.

XML – XML is the eXtensible Markup Language. XML provides a standard language to describe the
structure and semantics of documents, files, or data sets. XML itself is a structural language consisting of
elements, attributes, comments, and text data.

XML Schema – The XML Schema language provides the means to describe the structure of a family of
XML documents that follow the same rules for syntax, structure, and semantics. XML Schema is itself
written in XML, making it simpler to use when designing other XML-based formats.

 Specification – General Index I-1

 April 2008

General Index

NOTE: This index includes concepts, terms, and values. For a list of COLLADA elements, see the separate
“Index of COLLADA Elements.”

(pound sign)..3-2

.dae ...3-1

address syntax ..3-1

animation

element ...5-12

instance...5-52

library ..5-72

output channels...5-23

scene use and playback ..5-16

supporting with exporters ..2-2

animation clips

element ...5-15

library ..5-71

animation curves

definition..5-12

interpolation...5-118

representation ...5-118

separating or combining ..5-15

arc, definition ...5-98

array index notation ...3-9

attributes

id ...3-3

locating elements using...3-2

in XML ...3-1

name

common values...3-7

semantic.. See semantic attribute

sid ...3-3

source ...3-2

target

member selection values...3-8

url ... 3-1, 3-2

axis

direction ..5-18

base mesh, definition ...5-136

Bézier curves

BEZIER value... 5-31, 5-119

in animation ...5-120

in splines ...4-3

bind shape matrix, definition ..5-136

bind shape, definition...5-136

BINORMAL semantic.............................. 5-48, 5-112, 5-115

Boundary representation....................................... See B-rep

B-rep

definition..9-2

elements..9-1

B-spline curves

BSPLINE value .. 5-31, 5-119

in animation... 5-121

in splines ... 4-5

camera

element ... 5-21

field of view ..5-102, 5-108

image sensor .. 5-45

instance .. 5-54

library .. 5-73

position and orientation ... 5-86

cardinal curves

CARDINAL value ..5-31, 5-119

in animation... 5-121

in splines ... 4-6

COLLADA schema

assumptions and dependencies.................................. 1-1

B-rep elements ... 9-1

core elements ... 5-1

FX elements .. 8-1

goals and guidelines.. 1-1

kinematics elements.. 10-1

physics elements... 6-1

COLOR semantic .. 5-48

common profile ... 3-6

elements ... 3-6

common profile: See also elements:profile_COMMON

CONTINUITY semantic4-1, 4-2, 5-32, 5-48

coordinate system

setting the axes directions... 5-18

core elements.. 5-1

cube maps .. 8-110

curves See also specific type of curve

interpolating .. 4-1

DAE, definition... 3-1

deformers.. 5-92

distance measurement .. 5-18

dynamic range remapping ... 5-45

elements

in XML... 3-1

referencing .. 3-1

exporter user interface options

supporting with exporters.. 2-3

exporters ... 2-1

function curves

definition ... 5-12

FX

elements by profile .. 7-2

elements reference.. 8-1

introduction ... 7-1

I-2 COLLADA – Digital Asset Schema Release 1.5.0

geometry

definition and elements ..9-2

geometry types..6-3

glossary

common profile names ..3-7

groups

cg_param_group ...11-2

fx_newparam_group..11-2

fx_setparam_group..11-2

gles_param_group...11-2

gles2_value_group...11-2

glsl_value_group..11-2

Hermite curves

HERMITE value.. 5-31, 5-119

in animation ...5-120

in splines ...4-3

hierarchy

supporting with exporters ..2-1

IMAGE semantic ..5-48

importers ...2-3

IN_TANGENT semantic...4-1, 4-4, 5-32, 5-48, 5-119, 5-120

INPUT semantic...............................4-1, 5-48, 5-119, 5-120

instantiation

in COLLADA..3-5

list of instance_... elements..3-5

interpolation of curves.. 4-1, 5-118

INTERPOLATION semantic.4-1, 4-2, 4-6, 5-32, 5-48, 5-119

interpolation types ... 5-31, 5-119

INV_BIND_MATRIX semantic 5-48, 5-136

inverse bind matrix, definition5-136

joint

definition (core) ..5-136

definition (kinematics)...10-30

JOINT semantic5-48, 5-70, 5-136, 5-154

key frame, definition...5-12

kinematics elements ..10-1

layers...5-158

linear curves

in animation ...5-120

in splines ...4-2

LINEAR value... 5-31, 5-119

LINEAR_STEPS semantic4-1, 4-2, 5-32, 5-48

materials, supporting with exporters2-2

matrices, array index notation ..3-9

measurement, unit of, setting...5-18

meter ...5-18

MORPH_TARGET semantic...................... 5-48, 5-93, 5-143

MORPH_WEIGHT semantic...................... 5-48, 5-93, 5-143

naming conventions...3-6

node, definition ..5-98

NORMAL semantic ..5-48

notation

array index for vectors and matrices3-9

OUT_TANGENT semantic......... 4-1, 4-4, 5-32, 5-48, 5-119,

5-120

OUTPUT semantic........................... 4-1, 5-48, 5-119, 5-120

parameters

about .. 7-4

defining array type... 8-9

defining structures for.. 8-140

locating in bind and bind_vertex_input......................... 7-5

name and type conventions .. 3-6

setting value .. 5-128

specifying linkage .. 8-81

parentheses for array index notation................................ 3-9

path, definition... 5-98

physical units... 6-2

physics elements... 6-1

platforms ... 7-1

POSITION semantic4-1, 4-3, 4-4, 4-5, 4-6, 5-31, 5-32,

5-48, 5-90, 5-118, 5-156

profile COMMON

texture mapping .. 7-6

profiles .. 7-1

reflective elements... 5-100

refractive elements .. 5-100

render states ... 8-120

rendering, about .. 7-5

root of a subgraph... 5-98

scene data

supporting with exporters.. 2-3

scene graph root ... 5-98

scene graph topology, root of...................................... 5-157

scoped identifier: ..See SID

searching

for parameters in bind and bind_vertex_input 7-5

semantic attribute

common values... 3-7

naming conventions .. 3-6

use in curve interpolation... 4-1

values for .. 5-48

values for <input> ... 4-1

shaders

default colors .. 8-53

shorthand pointer .. 3-2

SID

definition ... 3-3

using ... 3-3

skinning

calculation and definitions 5-135

description and equations ... 4-7

spectral sampling .. 5-45

step curves

in animation... 5-119

STEP value.. 5-119

TANGENT semantic 5-48, 5-112, 5-115

TEXBINORMAL semantic 5-48, 5-112, 5-115

TEXCOORD semantic.. 5-48

example .. 8-22

TEXTANGENT semantic 5-48, 5-112, 5-115

 Specification – General Index I-3

 April 2008

textures

supporting with exporters ..2-2

texturing ..7-6

tone mapping ..5-45

topology, definition and elements.....................................9-2

transforms

supporting with exporters ..2-1

type

fx_common_color_or_texture_type8-52

fx_common_float_or_param_type..............................8-54

fx_sampler_common ...8-55

types

value (parameter) types ... 11-2

URI fragment identifier notation.. 3-2

UV semantic .. 5-48

value types .. 11-2

values, referencing... 3-1

vectors, array index notation.. 3-9

vertex attributes, supporting with exporters 2-2

VERTEX semantic.. 5-48

visibility support ... 5-158

WEIGHT semantic ..5-48, 5-136

weights definition... 5-136

XML, brief introduction .. 3-1

I-4 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

Index of COLLADA Elements

Note: This index lists the main definition entry for each element, not use within other elements.

element

<acceleration>

<axis_info> ...10-11

<effector_info>..10-19

<accessor> ...5-5

<active> ..10-10

<alpha_func> (render state)8-121

<alpha_test_enable> (render state)8-121

<alpha>...8-5

<altitude> ..5-40

<ambient> (core) ...5-11

<ambient> (FX) ..8-52

<angle> ...9-11

<angular_velocity>...6-17

<angular>..6-41

<animation_clip> ...5-15

<animation> ..5-12

<annotate>..8-6

<argument> ..8-7

<array>..8-9

<create_cube>..8-38

<create2d> ...8-35

<create3d> ...8-36

<articulated_system> ..10-3

<aspect_ratio>

<orthographic> ...5-102

<perspective>...5-108

<asset> ...5-17

use by external tools ...2-4

<attachment_end> ..10-5

<attachment_full>..10-6

<attachment_start> ...10-8

<attachment>..6-4

<author_email> ...5-27

<author_website>..5-27

<author> ...5-27

<authoring_tool> ...5-27

<auto_normal_enable> (render state).......................8-121

<axis_info> ..10-10

<axis>

<prismatic>...10-45

<revolute>...10-47

<swept_surface> ..9-44

<binary> ..8-11

<bind_attribute> ..8-15

<bind_joint_axis>...10-14

<bind_kinematics_model>.......................................10-16

<bind_material>...8-16

<bind_shape_matrix> ..5-135

<bind_uniform>... 8-19

<bind_vertex_input>.. 8-21

<bind> (FX) ... 8-13

<bind> (kinematics) ... 10-13

<blend_color> (render state).................................... 8-121

<blend_enable> (render state) 8-121

<blend_equation_separate> (render state) 8-121

<blend_equation> (render state).............................. 8-121

<blend_func_separate> (render state) 8-121

<blend_func> (render state)..................................... 8-121

<blinn>.. 8-23

<bool_array>... 5-20

<border_color> ... 8-56

<box> ... 6-5

<brep>.. 9-7

<camera> ... 5-21

<capsule> ... 6-6

<channel> ... 5-23

target attribute values ... 3-8

<circle>... 9-9

<clip_plane_enable> (render state) 8-121

<clip_plane> (render state) 8-121

<code> ... 8-26

<COLLADA>... 5-24

<color_clear> .. 8-27

<color_logic_op_enable> (render state) 8-121

<color_mask> (render state).................................... 8-121

<color_material_enable> (render state) 8-122

<color_material> (render state) 8-121

<color_target> .. 8-28

<color> ... 5-26

<comments> .. 5-27

<compiler>.. 8-30

<cone> ... 9-11

<connect_param> (kinematics) 10-18

<constant_attenuation>

<point>... 5-110

<spot>.. 5-141

<constant> (combiner)8-132, 8-135

<constant> (FX)... 8-31

<contributor> .. 5-27

<control_vertices>... 5-31

<controller>... 5-29

<convex_mesh>.. 6-7

<copyright>... 5-27

<coverage>... 5-17

<create_2d> ... 8-34

<create_3d> ... 8-36

<create_cube>.. 8-38

 Specification – Index of COLLADA Elements I-5

 April 2008

<created>..5-17

<cull_face_enable> (render state)8-122

<cull_face> (render state) ..8-122

<curve>...9-13

<curves> ...9-15

<cylinder> ...6-9

<cylinder> (B-Rep)...9-16

<damping>..6-41

<deceleration>

<axis_info> ...10-11

<effector_info>..10-20

<density> ..6-44

<depth_bounds_enable> (render state)8-122

<depth_bounds> (render state)8-122

<depth_clamp_enable> (render state)......................8-122

<depth_clear> ...8-40

<depth_func> (render state)8-122

<depth_mask> (render state)...................................8-122

<depth_range> (render state)8-122

<depth_target> ...8-41

<depth_test_enable> (render state)8-122

<diffuse> ...8-52

<direction>

<line>..9-24

<swept_surface> ..9-44

<directional> ...5-33

<dither_enable> (render state)8-122

<draw>..8-43

<dynamic_friction> ..6-26

<dynamic>

<instance_rigid_body>..6-17

<rigid_body>...6-36

<edges>..9-17

<effect>...8-45

<effector_info> ..10-19

<ellipse>..9-19

<emission>..8-52

<enabled> ...6-40

<equation>..6-33

<evaluate_scene> ...5-34

<evaluate> ..8-47

<exact>...8-49

<extra>..5-35

<faces> ...9-21

<falloff_angle> ...5-141

<falloff_exponent> ...5-141

<float_array> ...5-37

<float> (shader) ...8-54

<focal> ..9-33

<fog_color> (render state)..8-122

<fog_coord_src> (render state)................................8-122

<fog_density> (render state)8-122

<fog_enable> (render state)8-122

<fog_end> (render state) ...8-122

<fog_mode> (render state)8-122

<fog_state> (render state) 8-122

<force_field> ... 6-10

<format> ..8-49, 8-127

<formula> ... 5-38

<frame_object>... 10-21

<frame_origin> .. 10-21

<frame_tcp> ... 10-21

<frame_tip>... 10-21

<front_face> (render state) 8-122

<func> (render state) ... 8-121

<geographic_location>.. 5-40

<geometry> .. 5-42

<gravity>... 6-31

<h> ... 5-113

<half_extents> .. 6-5

<height>

<capsule> ...6-6, 6-9

<hex>

<binary> ... 8-11

<init_from> ... 8-63

<hint> ... 8-49

<hollow> ... 6-43

<hyperbola>.. 9-23

<IDREF_array>.. 5-44

<image>.. 8-58

<imager> .. 5-45

<import> ... 8-118

<include> .. 8-61

<index_of_refraction>.. 8-54

<index>... 10-11

<inertia>

<instance_rigid_body>.. 6-18

<rigid_body> .. 6-36

<init_from>.. 8-62

<inline> ... 8-118

<input>

semantic attribute See general index entry for

semantic attribute

semantics for <sampler> 5-119

semantics for <skin> .. 5-136

semantics for <triangles>.................................... 5-149

semantics for <trifans> 5-151

semantics for <tristrips>5-152, 5-153

semantics for <vertex_weights>.......................... 5-154

semantics for <vertices>..................................... 5-156

<input> (shared) .. 5-47

<input> (unshared) .. 5-50

<instance_animation> ... 5-52

<instance_articulated_system> 10-22

<instance_camera>... 5-54

<instance_controller>.. 5-56

<instance_effect>.. 8-64

<instance_force_field> .. 6-11

<instance_formula>... 5-59

<instance_geometry>.. 5-61

I-6 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

<instance_image> ...8-66

<instance_joint> ..10-24

<instance_kinematics_model>.................................10-26

<instance_kinematics_scene>10-28

<instance_light> ..5-63

<instance_material> (geometry)8-68

<instance_material> (rendering)8-70

<instance_node>...5-65

<instance_physics_material>6-12

<instance_physics_model>6-13

<instance_physics_scene>..6-15

<instance_rigid_body> ..6-16

<instance_rigid_constraint>6-19

<instance_visual_scene> ...5-67

<int_array> ..5-69

<interpenetrate>..6-40

<jerk>

<axis_info> ...10-11

<effector_info>..10-20

<joint> ...10-30

<joints> ...5-70

<keywords> ..5-17

<kinematics_model> ...10-35

<kinematics_scene>..10-37

<kinematics>...10-32

<lambert>..8-72

<latitude> ..5-40

<layer> ..8-105

<library_animation_clips> ..5-71

<library_animations>..5-72

<library_articulated_systems>..................................10-38

<library_cameras>...5-73

<library_controllers> ..5-74

<library_effects> ..8-74

<library_force_fields>...6-21

<library_formulas> ...5-75

<library_geometries> ...5-76

<library_images> ...8-75

<library_joints> ..10-39

<library_kinematics_models>...................................10-40

<library_kinematics_scenes>10-41

<library_lights> ..5-77

<library_materials> ..8-76

<library_nodes>...5-78

<library_physics_materials>6-22

<library_physics_models> ...6-23

<library_physics_scenes>..6-24

<library_visual_scenes> ...5-79

<light_ambient> (render state)8-122

<light_constant_attenuation> (render state)8-122

<light_diffuse> (render state)....................................8-122

<light_enable> (render state)....................................8-122

<light_linear_attenuation> (render state)...................8-122

<light_model_ambient> (render state)8-122

<light_model_color_control> (render state)8-122

<light_model_local_viewer_enable> (render state) ... 8-122

<light_model_two_side_enable> (render state) 8-122

<light_position> (render state) 8-122

<light_quadratic_attenuation> (render state) 8-123

<light_specular> (render state) 8-123

<light_spot_cutoff> (render state) 8-123

<light_spot_direction> (render state)........................ 8-123

<light_spot_exponent> (render state) 8-123

<lighting_enable> (render state)............................... 8-123

<lights>... 5-80

<limits> ... 6-40

<axis_info> ... 10-11

<prismatic> .. 10-45

<revolute> .. 10-47

<line_smooth_enable> (render state)....................... 8-123

<line_stipple_enable> (render state) 8-123

<line_stipple> (render state)..................................... 8-123

<line_width> (render state) 8-123

<line>.. 9-24

<linear_attenuation>

<point>... 5-110

<spot>.. 5-141

<linear>..6-40, 6-41

<lines> .. 5-82

<linestrips> ... 5-84

<link>.. 10-42

<linker>... 8-78

<locked>... 10-10

<logic_op_enable> (render state) 8-123

<logic_op> (render state)... 8-123

<longitude>... 5-40

<lookout> ... 5-86

<magfilter>.. 8-56

<mass_frame>

<instance_rigid_body>/<technique_common> 6-18

<rigid_body>/<technique_common>.................... 6-36

<mass>

<instance_rigid_body>.. 6-17

<rigid_body> .. 6-36

<shape> ... 6-44

<material_ambient> (render state) 8-123

<material_diffuse> (render state).............................. 8-123

<material_emission> (render state) 8-123

<material_shininess> (render state) 8-123

<material_specular> (render state)........................... 8-123

<material>... 8-79

<matrix>.. 5-88

<max_anisotropy> .. 8-56

<max>

<limits>.. 10-11, 10-45, 10-47

<mesh> .. 5-89

<min>

<limits>.. 10-11, 10-45, 10-47

<minfilter> ... 8-56

<mip_bias> ... 8-56

 Specification – Index of COLLADA Elements I-7

 April 2008

<mip_max_level>...8-56

<mip_min_level>..8-56

<mipfilter> ...8-56

<mips>

<create_cube>..8-38

<create2d> ...8-34

<create3d> ...8-36

<model_view_matrix> (render state)8-123

<modified> ..5-18

<modifier> ...8-81

<morph> ...5-92

<motion>...10-43

<multisample_enable> (render state)8-123

<Name_array>...5-94

semantic values for curves4-1

<newparam>...5-96

common semantic attribute values..........................3-7

<node> ...5-98

<normalize_enable> (render state)8-123

<nurbs_surface> ...9-28

<nurbs> ..9-25

<optics>..5-100

<orient>...9-31

<origin>...9-32

<orthographic>..5-102

<p>

<edges> ...9-17

<faces> ..9-22

<lines>..5-82

<linestrips> ...5-84

<pcurves> ..9-34

<ph>...5-113

<polygons>...5-113

<polylist> ..5-116

<shells> ..9-36

<solids>..9-38

<triangles>..5-148

<trifans> ...5-150

<tristrips> ...5-152

<wires>...9-47

<parabola>..9-33

<param>

common name attribute values3-7

<param> (data flow) ..5-104

<param> (reference) ..5-105

<pass>..8-82

<pcurves> ...9-34

<perspective> ...5-108

<ph> ...5-113

<phong> ...8-84

<physics_material>..6-25

<physics_model> ..6-27

<physics_scene>...6-30

<plane>...6-33

<point_distance_attenuation> (render state)8-123

<point_fade_threshold_size> (render state) 8-123

<point_size_max> (render state).............................. 8-123

<point_size_min> (render state)............................... 8-123

<point_size> (render state) 8-123

<point_smooth_enable> (render state) 8-123

<point> ... 5-110

<polygon_mode> (render state)............................... 8-123

<polygon_offset_fill_enable> (render state) 8-123

<polygon_offset_line_enable> (render state) 8-123

<polygon_offset_point_enable> (render state) 8-123

<polygon_offset> (render state) 8-123

<polygon_smooth_enable> (render state)................ 8-123

<polygon_stipple_enable> (render state) 8-123

<polygons>... 5-112

<polylist> .. 5-115

<prismatic>... 10-45

<profile_BRIDGE>... 8-87

<profile_CG>... 8-89

<profile_COMMON> ... 8-92

overview ... 3-6

<profile_GLES>... 8-94

<profile_GLES2>... 8-97

<profile_GLSL> ... 8-101

<program>.. 8-103

<projection_matrix> (render state) 8-123

<quadratic_attenuation>

<point>... 5-110

<spot>.. 5-141

<radius>

<capsule> ...6-6, 6-9

<circle> .. 9-9

<cone>... 9-11

<cylinder>... 9-16

<ellipse>... 9-19

<hyperbola> ... 9-23

<sphere>.. 6-45

<torus>... 9-46

<ref_attachment>.. 6-34

<ref>

<binary> ... 8-11

<init_from> ... 8-63

<reflective> ... 8-52

<reflectivity>.. 8-54

<render> ... 8-105

<renderable> .. 8-59

<rescale_normal_enable> (render state) 8-124

<restitution>.. 6-26

<revision> ... 5-18

<revolute>... 10-47

<RGB> ... 8-106

<rigid_body>... 6-35

<rigid_constraint> ... 6-39

<rotate> .. 5-117

<sample_alpha_to_coverage_enable> (render state)8-124

<sample_alpha_to_one_enable> (render state)........ 8-124

I-8 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

<sample_coverage_enable> (render state)...............8-124

<sample_coverage> (render state)...........................8-124

<sampler_image>..8-113

<sampler_states>..8-114

<sampler> ...5-118

interpolation ..4-1

<sampler1D> ..8-107

<sampler2D> ..8-108

<sampler3D> ..8-109

<samplerCUBE> ...8-110

<samplerDEPTH>..8-111

<samplerRECT>..8-112

<scale> ...5-125

<scene> ..5-126

<scissor_test_enable> (render state)8-124

<scissor> (render state) ...8-124

<semantic> ...8-115

<setparam>...5-128

<shade_model> (render state)8-124

<shader>...8-116

<shape>..6-43

<shells>...9-36

<shininess> ...8-54

<SIDREF_array>..5-130

<size_exact> ...8-34

<size_ratio>...8-34

<size>

<create_cube>..8-38

<create3d> ...8-36

<skeleton> ..5-131

<skew> ...5-133

<skin> ...5-134

<solids> ..9-38

<source_data> ..5-27

<source> (core) ...5-137

<sources> ...8-118

<specular> ..8-52

<speed>

<axis_info> ...10-11

<effector_info>..10-19

<sphere>...6-45

<spline> ..5-139

interpolation ..4-1

<spot> ..5-141

<spring>..6-41

<states> ..8-120

<static_friction> ...6-26

<stencil_clear> ..8-126

<stencil_func_separate> (render state)8-124

<stencil_func> (render state)....................................8-124

<stencil_mask_separate> (render state)...................8-124

<stencil_mask> (render state)8-124

<stencil_op_separate> (render state)8-124

<stencil_op> (render state)8-124

<stencil_target>...8-127

<stencil_test_enable> (render state) 8-124

<stiffness> .. 6-41

<subject>.. 5-18

<surface_curves>.. 9-43

<surface>.. 9-40

<surfaces>.. 9-42

<swept_surface> .. 9-44

<swing_cone_and_twist>.. 6-40

<target_value> .. 6-41

<target> .. 5-38

<targets> .. 5-143

<technique_common> .. 5-146

<bind_material>.. 8-17

<formula>... 5-39

<instance_rigid_body>.. 6-17

<kinematics_model>... 10-36

<kinematics> .. 10-33

<light> .. 5-80

<motion>.. 10-44

<optics> ... 5-101

<physics_material>... 6-25

<physics_scene>.. 6-31

<rigid_body> .. 6-36

<rigid_constraint>... 6-40

<source>.. 5-138

overview ... 3-6

<technique_hint> .. 8-131

<technique_override>.. 8-71

<technique>

overview ... 3-6

<technique> (core) .. 5-144

<technique> (FX) ... 8-129

<texcombiner>.. 8-132

<texcoord> ... 8-56

<texenv>... 8-135

<texture_env_color> (render state) 8-124

<texture_env_mode> (render state) 8-124

<texture_pipeline>... 8-137

<texture_pipeline> (render state) 8-124

<texture> (shader) ... 8-53

<texture1D_enable> (render state) 8-124

<texture1D> (render state) 8-124

<texture2D_enable> (render state) 8-125

<texture2D> (render state) 8-125

<texture3D_enable> (render state) 8-125

<texture3D> (render state) 8-125

<textureCUBE_enable> (render state) 8-125

<textureCUBE> (render state) 8-125

<textureDEPTH_enable> (render state) 8-125

<textureDEPTH> (render state)................................ 8-125

<textureRECT_enable> (render state)...................... 8-125

<textureRECT> (render state) 8-125

<time_step>.. 6-31

<title>.. 5-18

<torus> ... 9-46

 Specification – Index of COLLADA Elements I-9

 April 2008

<translate> ..5-147

<transparency> ...8-54

<transparent>..8-52

<triangles> ..5-148

<trifans> ..5-150

<tristrips> ..5-152

<unit>..5-18

<unnormalized>...8-35

<up_axis> ...5-18

<usertype> ..8-140

<v>..5-154

<value>

<bind_joint_axis> ..10-14

<value> (render state) ..8-121

<vcount>

<faces> ..9-21

<pcurves> ..9-34

<polylist> ..5-116

<shells> ..9-36

<solids>..9-38

<vertex_weights>..5-154

<wires> .. 9-47

<velocity> ... 6-17

<vertex_weights>.. 5-154

<vertices> ... 5-156

<visual_scene> ... 5-157

<wires>... 9-47

<wrap_p> ... 8-56

<wrap_s>.. 8-56

<wrap_t> .. 8-56

<xfov>... 5-108

<xmag> .. 5-102

<yfov>... 5-108

<ymag> .. 5-102

<zfar>

<orthographic>... 5-102

<perspective>... 5-108

<znear>

<orthographic>... 5-102

<perspective>... 5-108

I-10 COLLADA – Digital Asset Schema Release 1.5.0

April 2008

This page intentionally left blank

	COLLADA – Digital Asset Schema Release 1.5.0 Specification
	About This Manual
	Audience
	Content of this Document
	Typographic Conventions and Notation
	Notation and Organization in the Reference Chapters
	Other Sources of Information

	Chapter 1: Design Considerations
	Introduction
	Assumptions and Dependencies
	Goals and Guidelines

	Chapter 2: Tool Requirements and Options
	Introduction
	Exporters
	Importers
	Archive Packaging

	Chapter 3: Schema Concepts
	Introduction
	XML Overview
	Address Syntax
	Instantiation and External Referencing
	The Common Profile

	Chapter 4: Programming Guide
	Introduction
	About Parameters in COLLADA
	Curve Interpolation
	Skin Deformation (or Skinning) in COLLADA

	Chapter 5: Core Elements Reference
	Introduction
	Elements by Category
	accessor
	ambient(core)
	animation
	animation_clip
	asset
	bool_array
	camera
	channel
	COLLADA
	color
	contributor
	controller
	control_vertices
	directional
	evaluate_scene
	extra
	float_array
	formula
	geographic_location
	geometry
	IDREF_array
	imager
	input (shared)
	input (unshared)
	instance_animation
	instance_camera
	instance_controller
	instance_formula
	instance_geometry
	instance_light
	instance_node
	instance_visual_scene
	int_array
	joints
	library_animation_clips
	library_animations
	library_cameras
	library_controllers
	library_formulas
	library_geometries
	library_lights
	library_nodes
	library_visual_scenes
	light
	lines
	linestrips
	lookat
	matrix
	mesh
	morph
	Name_array
	newparam
	node
	optics
	orthographic
	param (data flow)
	param (reference)
	perspective
	point
	polygons
	polylist
	rotate
	sampler
	scale
	scene
	setparam
	SIDREF_array
	skeleton
	skew
	skin
	source (core)
	spline
	spot
	targets
	technique (core)
	technique_common
	translate
	triangles
	trifans
	tristrips
	vertex_weights
	vertices
	visual_scene

	Chapter 6: Physics Reference
	Introduction
	Elements by Category
	attachment
	box
	capsule
	convex_mesh
	cylinder
	force_field
	instance_force_field
	instance_physics_material
	instance_physics_model
	instance_physics_scene
	instance_rigid_body
	instance_rigid_constraint
	library_force_fields
	library_physics_materials
	library_physics_models
	library_physics_scenes
	physics_material
	physics_model
	physics_scene
	plane
	ref_attachment
	rigid_body
	rigid_constraint
	shape
	sphere

	Chapter 7: Getting Started with FX
	Introduction
	Using Profiles for Platform-Specific Effects
	About Parameters in FX
	Shaders
	Rendering
	Texturing

	Chapter 8: FX Reference
	Introduction
	Elements by Category
	About COLLADA FX
	alpha
	annotate
	argument
	array
	binary
	bind(FX)
	bind_attribute
	bind_material
	bind_uniform
	bind_vertex_input
	blinn
	code
	color_clear
	color_target
	compiler
	constant (FX)
	create_2d
	create_3d
	create_cube
	depth_clear
	depth_target
	draw
	effect
	evaluate
	format
	fx_common_color_or_texture_type
	fx_common_float_or_param_type
	fx_sampler_common
	image
	include
	init_from
	instance_effect
	instance_image
	instance_material (geometry)
	instance_material (rendering)
	lambert
	library_effects
	library_images
	library_materials
	linker
	material
	modifier
	pass
	phong
	profile_BRIDGE
	profile_CG
	profile_COMMON
	profile_GLES
	profile_GLES2
	profile_GLSL
	program
	render
	RGB
	sampler1D
	sampler2D
	sampler3D
	samplerCUBE
	samplerDEPTH
	samplerRECT
	sampler_image
	sampler_states
	semantic
	shader
	sources
	states
	stencil_clear
	stencil_target
	technique (FX)
	technique_hint
	texcombiner
	texenv
	texture_pipeline
	usertype

	Chapter 9: B-Rep Reference
	Introduction
	Elements by Category
	About B-Rep in COLLADA
	brep
	circle
	cone
	curve
	curves
	cylinder(B-Rep)
	edges
	ellipse
	faces
	hyperbola
	line
	nurbs
	nurbs_surface
	orient
	origin
	parabola
	pcurves
	shells
	solids
	surface
	surfaces
	surface_curves
	swept_surface
	torus
	wires
	Complete B-Rep Example

	Chapter 10: Kinematics Reference
	Introduction
	Elements by Category
	articulated_system
	attachment_end
	attachment_full
	attachment_start
	axis_info
	bind (kinematics)
	bind_joint_axis
	bind_kinematics_model
	connect_param (kinematics)
	effector_info
	frame_object, frame_origin, frame_tcp, frame_tip
	instance_articulated_system
	instance_joint
	instance_kinematics_model
	instance_kinematics_scene
	joint
	kinematics
	kinematics_model
	kinematics_scene
	library_articulated_systems
	library_joints
	library_kinematics_models
	library_kinematics_scenes
	link
	motion
	prismatic
	revolute

	Chapter 11: Types
	Introduction
	Simple Value Types
	Parameter-Type Elements
	Other Simple Types
	Value-or-Param Types

	Appendix A: COLLADA Example
	Example: Cube

	Appendix B: Profile GLSL and GLES2 Examples
	Example: <profile_GLSL>
	Example: <profile_GLES2>

	Glossary
	General Index
	Index of COLLADA Elements

